Jump to navigation Jump to search

General

Display information for equation id:math.1824.65 on revision:1824

* Page found: Das Wasserstoffatom (relativistsich) (eq math.1824.65)

(force rerendering)

Occurrences on the following pages:

Hash: 250d6dca3cd049a60f1e7ff63a85f484

TeX (original user input):

\begin{align}

& \frac{a\left( \lambda +q+n\acute{\ } \right)+{{a}_{2}}\gamma }{a}=-\frac{\left[ {{a}_{2}}\left( \lambda -q+n\acute{\ } \right)-a\gamma  \right]}{{{a}_{2}}} \\

& \lambda +q+n\acute{\ }+\frac{{{a}_{2}}}{a}\gamma +\lambda -q+n\acute{\ }+\frac{a}{{{a}_{2}}}\gamma =0 \\

& 2a\left( \lambda +n\acute{\ } \right)=\left( \frac{{{a}^{2}}}{{{a}_{2}}}-{{a}_{2}} \right)\gamma =\frac{2E}{\hbar c}\gamma  \\

& \frac{{{a}^{2}}}{{{a}_{2}}}={{a}_{1}} \\

& {{a}^{2}}{{\left( \lambda +n\acute{\ } \right)}^{2}}=\frac{{{E}^{2}}}{{{\hbar }^{2}}{{c}^{2}}}{{\gamma }^{2}} \\

\end{align}

TeX (checked):

{\begin{aligned}&{\frac {a\left(\lambda +q+n{\acute {\ }}\right)+{{a}_{2}}\gamma }{a}}=-{\frac {\left[{{a}_{2}}\left(\lambda -q+n{\acute {\ }}\right)-a\gamma \right]}{{a}_{2}}}\\&\lambda +q+n{\acute {\ }}+{\frac {{a}_{2}}{a}}\gamma +\lambda -q+n{\acute {\ }}+{\frac {a}{{a}_{2}}}\gamma =0\\&2a\left(\lambda +n{\acute {\ }}\right)=\left({\frac {{a}^{2}}{{a}_{2}}}-{{a}_{2}}\right)\gamma ={\frac {2E}{\hbar c}}\gamma \\&{\frac {{a}^{2}}{{a}_{2}}}={{a}_{1}}\\&{{a}^{2}}{{\left(\lambda +n{\acute {\ }}\right)}^{2}}={\frac {{E}^{2}}{{{\hbar }^{2}}{{c}^{2}}}}{{\gamma }^{2}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (5.13 KB / 616 B) :

a(λ+q+n´)+a2γa=[a2(λq+n´)aγ]a2λ+q+n´+a2aγ+λq+n´+aa2γ=02a(λ+n´)=(a2a2a2)γ=2Ecγa2a2=a1a2(λ+n´)2=E22c2γ2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BB;</mi><mo>+</mo><mi>q</mi><mo>+</mo><mi>n</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mi>&#x03B3;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></mfrac></mrow><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BB;</mi><mo>&#x2212;</mo><mi>q</mi><mo>+</mo><mi>n</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mi>a</mi><mi>&#x03B3;</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>&#x03BB;</mi><mo>+</mo><mi>q</mi><mo>+</mo><mi>n</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></mfrac></mrow><mi>&#x03B3;</mi><mo>+</mo><mi>&#x03BB;</mi><mo>&#x2212;</mo><mi>q</mi><mo>+</mo><mi>n</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow><mrow data-mjx-texclass="ORD"><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mfrac></mrow><mi>&#x03B3;</mi><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mn>2</mn><mi>a</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BB;</mi><mo>+</mo><mi>n</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mfrac></mrow><mo>&#x2212;</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03B3;</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>E</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi><mi>c</mi></mrow></mrow></mfrac></mrow><mi>&#x03B3;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mfrac></mrow><mo>=</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03BB;</mi><mo>+</mo><mi>n</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>E</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><msup><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das Wasserstoffatom (relativistsich) page

Identifiers

  • a
  • λ
  • q
  • n
  • ´
  • a2
  • γ
  • a
  • a2
  • λ
  • q
  • n
  • ´
  • a
  • γ
  • a2
  • λ
  • q
  • n
  • ´
  • a2
  • a
  • γ
  • λ
  • q
  • n
  • ´
  • a
  • a2
  • γ
  • a
  • λ
  • n
  • ´
  • a
  • a2
  • a2
  • γ
  • E
  • c
  • γ
  • a
  • a2
  • a1
  • a
  • λ
  • n
  • ´
  • E
  • c
  • γ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results