Jump to navigation Jump to search

General

Display information for equation id:math.1824.54 on revision:1824

* Page found: Das Wasserstoffatom (relativistsich) (eq math.1824.54)

(force rerendering)

Occurrences on the following pages:

Hash: 04aa2e287c12f76ba761625ca01383c7

TeX (original user input):

\begin{align}

& \left( k+1 \right){{g}_{k+1}}\approx 2{{g}_{k}} \\

& \Rightarrow \frac{{{g}_{k+1}}}{{{g}_{k}}}\approx \frac{2}{k+1}\Rightarrow {{g}_{k+1}}\approx \frac{{{2}^{k+1}}}{\left( k+1 \right)!}{{g}_{0}} \\

& \Rightarrow g(\rho )\tilde{\ }{{e}^{2\rho }} \\

& \Rightarrow f(\rho )\tilde{\ }{{e}^{2\rho }} \\

\end{align}

TeX (checked):

{\begin{aligned}&\left(k+1\right){{g}_{k+1}}\approx 2{{g}_{k}}\\&\Rightarrow {\frac {{g}_{k+1}}{{g}_{k}}}\approx {\frac {2}{k+1}}\Rightarrow {{g}_{k+1}}\approx {\frac {{2}^{k+1}}{\left(k+1\right)!}}{{g}_{0}}\\&\Rightarrow g(\rho ){\tilde {\ }}{{e}^{2\rho }}\\&\Rightarrow f(\rho ){\tilde {\ }}{{e}^{2\rho }}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (2.772 KB / 488 B) :

(k+1)gk+12gkgk+1gk2k+1gk+12k+1(k+1)!g0g(ρ)~e2ρf(ρ)~e2ρ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>g</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mrow></msub><mo>&#x2248;</mo><mn>2</mn><msub><mi>g</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>g</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><msub><mi>g</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mrow></mfrac></mrow><mo>&#x2248;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mrow></mfrac></mrow><mo>&#x21D2;</mo><msub><mi>g</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mrow></msub><mo>&#x2248;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mn>2</mn><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>!</mi></mrow></mrow></mfrac></mrow><msub><mi>g</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>g</mi><mo stretchy="false">(</mo><mi>&#x03C1;</mi><mo stretchy="false">)</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo>~</mo></mover></mrow></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C1;</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>f</mi><mo stretchy="false">(</mo><mi>&#x03C1;</mi><mo stretchy="false">)</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo>~</mo></mover></mrow></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C1;</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das Wasserstoffatom (relativistsich) page

Identifiers

  • k
  • gk+1
  • gk
  • gk+1
  • gk
  • k
  • gk+1
  • k
  • k
  • g0
  • g
  • ρ
  • ~
  • e
  • ρ
  • f
  • ρ
  • ~
  • e
  • ρ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results