Jump to navigation Jump to search

General

Display information for equation id:math.1824.18 on revision:1824

* Page found: Das Wasserstoffatom (relativistsich) (eq math.1824.18)

(force rerendering)

Occurrences on the following pages:

Hash: d90de7f0ac9bbb963b89da35c6d047c7

TeX (original user input):

\begin{align}

& {{\left( {{\alpha }_{r}} \right)}^{2}}=\frac{1}{{{r}^{2}}}\left( \bar{\alpha }\bar{r} \right)\left( \bar{\alpha }\bar{r} \right)=\frac{1}{{{r}^{2}}}{{\alpha }^{\mu }}{{\alpha }^{\nu }}{{x}^{\mu }}{{x}^{\nu }}=\frac{1}{2{{r}^{2}}}\left( {{\alpha }^{\mu }}{{\alpha }^{\nu }}+{{\alpha }^{\nu }}{{\alpha }^{\mu }} \right){{x}^{\mu }}{{x}^{\nu }} \\

& \left( {{\alpha }^{\mu }}{{\alpha }^{\nu }}+{{\alpha }^{\nu }}{{\alpha }^{\mu }} \right)=2{{\delta }^{\mu \nu }} \\

& \frac{1}{2{{r}^{2}}}2{{x}^{\mu }}{{x}^{\mu }}=\frac{{{r}^{2}}}{{{r}^{2}}}=1 \\

& {{\alpha }_{r}}\beta +\beta {{\alpha }_{r}}=\frac{1}{r}\left( \bar{\alpha }\beta +\beta \bar{\alpha } \right)\bar{r} \\

& \left( \bar{\alpha }\beta +\beta \bar{\alpha } \right)=0\Rightarrow \frac{1}{r}\left( \bar{\alpha }\beta +\beta \bar{\alpha } \right)\bar{r}=0 \\

\end{align}

TeX (checked):

{\begin{aligned}&{{\left({{\alpha }_{r}}\right)}^{2}}={\frac {1}{{r}^{2}}}\left({\bar {\alpha }}{\bar {r}}\right)\left({\bar {\alpha }}{\bar {r}}\right)={\frac {1}{{r}^{2}}}{{\alpha }^{\mu }}{{\alpha }^{\nu }}{{x}^{\mu }}{{x}^{\nu }}={\frac {1}{2{{r}^{2}}}}\left({{\alpha }^{\mu }}{{\alpha }^{\nu }}+{{\alpha }^{\nu }}{{\alpha }^{\mu }}\right){{x}^{\mu }}{{x}^{\nu }}\\&\left({{\alpha }^{\mu }}{{\alpha }^{\nu }}+{{\alpha }^{\nu }}{{\alpha }^{\mu }}\right)=2{{\delta }^{\mu \nu }}\\&{\frac {1}{2{{r}^{2}}}}2{{x}^{\mu }}{{x}^{\mu }}={\frac {{r}^{2}}{{r}^{2}}}=1\\&{{\alpha }_{r}}\beta +\beta {{\alpha }_{r}}={\frac {1}{r}}\left({\bar {\alpha }}\beta +\beta {\bar {\alpha }}\right){\bar {r}}\\&\left({\bar {\alpha }}\beta +\beta {\bar {\alpha }}\right)=0\Rightarrow {\frac {1}{r}}\left({\bar {\alpha }}\beta +\beta {\bar {\alpha }}\right){\bar {r}}=0\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (6.255 KB / 562 B) :

(αr)2=1r2(α¯r¯)(α¯r¯)=1r2αμανxμxν=12r2(αμαν+αναμ)xμxν(αμαν+αναμ)=2δμν12r22xμxμ=r2r2=1αrβ+βαr=1r(α¯β+βα¯)r¯(α¯β+βα¯)=01r(α¯β+βα¯)r¯=0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><mo>+</mo><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><mo>+</mo><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BD;</mi></mrow></msup><msup><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>2</mn><msup><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi><mi>&#x03BD;</mi></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mn>2</mn><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>&#x03BC;</mi></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mfrac></mrow><mo>=</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mi>&#x03B2;</mi><mo>+</mo><mi>&#x03B2;</mi><msub><mi>&#x03B1;</mi><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mi>&#x03B2;</mi><mo>+</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mi>&#x03B2;</mi><mo>+</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>0</mn><mo>&#x21D2;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mi>&#x03B2;</mi><mo>+</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03B1;</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das Wasserstoffatom (relativistsich) page

Identifiers

  • αr
  • r
  • α¯
  • r¯
  • α¯
  • r¯
  • r
  • α
  • μ
  • α
  • ν
  • x
  • μ
  • x
  • ν
  • r
  • α
  • μ
  • α
  • ν
  • α
  • ν
  • α
  • μ
  • x
  • μ
  • x
  • ν
  • α
  • μ
  • α
  • ν
  • α
  • ν
  • α
  • μ
  • δ
  • μ
  • ν
  • r
  • x
  • μ
  • x
  • μ
  • r
  • r
  • αr
  • β
  • β
  • αr
  • r
  • α¯
  • β
  • β
  • α¯
  • r¯
  • α¯
  • β
  • β
  • α¯
  • r
  • α¯
  • β
  • β
  • α¯
  • r¯

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results