Jump to navigation Jump to search

General

Display information for equation id:math.1820.1 on revision:1820

* Page found: Der nichtrelativistische Grenzfall (eq math.1820.1)

(force rerendering)

Occurrences on the following pages:

Hash: 98ab90c983f47be184b89ae32a50ae42

TeX (original user input):

\begin{align}

& H={{m}_{0}}{{c}^{2}}\beta ={{m}_{0}}{{c}^{2}}\left( \begin{matrix}

1 & {} & {} & {}  \\

{} & 1 & {} & {}  \\

{} & {} & -1 & {}  \\

{} & {} & {} & -1  \\

\end{matrix} \right) \\

& \Psi =\left( \begin{matrix}

{{\Psi }_{1}}  \\

{{\Psi }_{2}}  \\

{{\Psi }_{3}}  \\

{{\Psi }_{4}}  \\

\end{matrix} \right)\Rightarrow \beta \Psi =\left( \begin{matrix}

{{\Psi }_{1}}  \\

{{\Psi }_{2}}  \\

-{{\Psi }_{3}}  \\

-{{\Psi }_{4}}  \\

\end{matrix} \right) \\

\end{align}

TeX (checked):

{\begin{aligned}&H={{m}_{0}}{{c}^{2}}\beta ={{m}_{0}}{{c}^{2}}\left({\begin{matrix}1&{}&{}&{}\\{}&1&{}&{}\\{}&{}&-1&{}\\{}&{}&{}&-1\\\end{matrix}}\right)\\&\Psi =\left({\begin{matrix}{{\Psi }_{1}}\\{{\Psi }_{2}}\\{{\Psi }_{3}}\\{{\Psi }_{4}}\\\end{matrix}}\right)\Rightarrow \beta \Psi =\left({\begin{matrix}{{\Psi }_{1}}\\{{\Psi }_{2}}\\-{{\Psi }_{3}}\\-{{\Psi }_{4}}\\\end{matrix}}\right)\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (2.836 KB / 449 B) :

H=m0c2β=m0c2(1111)Ψ=(Ψ1Ψ2Ψ3Ψ4)βΨ=(Ψ1Ψ2Ψ3Ψ4)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>H</mi><mo>=</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>&#x03B2;</mi><mo>=</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd></mtd><mtd></mtd><mtd></mtd></mtr><mtr><mtd></mtd><mtd><mn>1</mn></mtd><mtd></mtd><mtd></mtd></mtr><mtr><mtd></mtd><mtd></mtd><mtd><mo>&#x2212;</mo><mn>1</mn></mtd><mtd></mtd></mtr><mtr><mtd></mtd><mtd></mtd><mtd></mtd><mtd><mo>&#x2212;</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x21D2;</mo><mi>&#x03B2;</mi><mi mathvariant="normal">&#x03A8;</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der nichtrelativistische Grenzfall page

Identifiers

  • H
  • m0
  • c
  • β
  • m0
  • c
  • Ψ
  • Ψ1
  • Ψ2
  • Ψ3
  • Ψ4
  • β
  • Ψ
  • Ψ1
  • Ψ2
  • Ψ3
  • Ψ4

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results