Jump to navigation Jump to search

General

Display information for equation id:math.1819.5 on revision:1819

* Page found: Der nichtrelativistische Grenzfall (eq math.1819.5)

(force rerendering)

Occurrences on the following pages:

Hash: b72f90c2a6c8479a8c93339429a696e7

TeX (original user input):

\begin{align}

& {{\Psi }_{1}}={{e}^{-\frac{i}{\hbar }{{m}_{0}}{{c}^{2}}t}}{{e}_{1}}\quad Spin:\uparrow \quad Ruheenergie>0 \\

& {{\Psi }_{2}}={{e}^{-\frac{i}{\hbar }{{m}_{0}}{{c}^{2}}t}}{{e}_{2}}\quad Spin:\downarrow \quad Ruheenergie>0 \\

& {{\Psi }_{3}}={{e}^{\frac{i}{\hbar }{{m}_{0}}{{c}^{2}}t}}{{e}_{3}}\quad Spin:\uparrow \quad Ruheenergie<0 \\

& {{\Psi }_{4}}={{e}^{\frac{i}{\hbar }{{m}_{0}}{{c}^{2}}t}}{{e}_{4}}\quad Spin:\downarrow \quad Ruheenergie<0 \\

\end{align}

TeX (checked):

{\begin{aligned}&{{\Psi }_{1}}={{e}^{-{\frac {i}{\hbar }}{{m}_{0}}{{c}^{2}}t}}{{e}_{1}}\quad Spin:\uparrow \quad Ruheenergie>0\\&{{\Psi }_{2}}={{e}^{-{\frac {i}{\hbar }}{{m}_{0}}{{c}^{2}}t}}{{e}_{2}}\quad Spin:\downarrow \quad Ruheenergie>0\\&{{\Psi }_{3}}={{e}^{{\frac {i}{\hbar }}{{m}_{0}}{{c}^{2}}t}}{{e}_{3}}\quad Spin:\uparrow \quad Ruheenergie<0\\&{{\Psi }_{4}}={{e}^{{\frac {i}{\hbar }}{{m}_{0}}{{c}^{2}}t}}{{e}_{4}}\quad Spin:\downarrow \quad Ruheenergie<0\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.932 KB / 479 B) :

Ψ1=eim0c2te1Spin:Ruheenergie>0Ψ2=eim0c2te2Spin:Ruheenergie>0Ψ3=eim0c2te3Spin:Ruheenergie<0Ψ4=eim0c2te4Spin:Ruheenergie<0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>t</mi></mrow></mrow></msup><msub><mi>e</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mspace width="1em"></mspace><mi>S</mi><mi>p</mi><mi>i</mi><mi>n</mi><mi>:</mi><mo>&#x2191;</mo><mspace width="1em"></mspace><mi>R</mi><mi>u</mi><mi>h</mi><mi>e</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>g</mi><mi>i</mi><mi>e</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>t</mi></mrow></mrow></msup><msub><mi>e</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mspace width="1em"></mspace><mi>S</mi><mi>p</mi><mi>i</mi><mi>n</mi><mi>:</mi><mo>&#x2193;</mo><mspace width="1em"></mspace><mi>R</mi><mi>u</mi><mi>h</mi><mi>e</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>g</mi><mi>i</mi><mi>e</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>t</mi></mrow></mrow></msup><msub><mi>e</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mspace width="1em"></mspace><mi>S</mi><mi>p</mi><mi>i</mi><mi>n</mi><mi>:</mi><mo>&#x2191;</mo><mspace width="1em"></mspace><mi>R</mi><mi>u</mi><mi>h</mi><mi>e</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>g</mi><mi>i</mi><mi>e</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msub><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>t</mi></mrow></mrow></msup><msub><mi>e</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msub><mspace width="1em"></mspace><mi>S</mi><mi>p</mi><mi>i</mi><mi>n</mi><mi>:</mi><mo>&#x2193;</mo><mspace width="1em"></mspace><mi>R</mi><mi>u</mi><mi>h</mi><mi>e</mi><mi>e</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>g</mi><mi>i</mi><mi>e</mi><mo>&lt;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der nichtrelativistische Grenzfall page

Identifiers

  • Ψ1
  • e
  • i
  • m0
  • c
  • t
  • e1
  • S
  • p
  • i
  • n
  • R
  • u
  • h
  • e
  • e
  • n
  • e
  • r
  • g
  • i
  • e
  • Ψ2
  • e
  • i
  • m0
  • c
  • t
  • e2
  • S
  • p
  • i
  • n
  • R
  • u
  • h
  • e
  • e
  • n
  • e
  • r
  • g
  • i
  • e
  • Ψ3
  • e
  • i
  • m0
  • c
  • t
  • e3
  • S
  • p
  • i
  • n
  • R
  • u
  • h
  • e
  • e
  • n
  • e
  • r
  • g
  • i
  • e
  • Ψ4
  • e
  • i
  • m0
  • c
  • t
  • e4
  • S
  • p
  • i
  • n
  • R
  • u
  • h
  • e
  • e
  • n
  • e
  • r
  • g
  • i
  • e

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results