Jump to navigation Jump to search

General

Display information for equation id:math.1819.48 on revision:1819

* Page found: Der nichtrelativistische Grenzfall (eq math.1819.48)

(force rerendering)

Occurrences on the following pages:

Hash: 13bd914fdedab6d7a7f68b09814d8543

TeX (original user input):

\varepsilon {{\phi }_{a}}=\left( \frac{{{p}^{2}}}{2{{m}_{0}}}+V(r)-\frac{{{p}^{4}}}{8{{m}_{0}}^{3}{{c}^{2}}}+\frac{{{\hbar }^{2}}}{4{{m}_{0}}^{2}{{c}^{2}}}\frac{dV}{dr}\frac{1}{r}\frac{\partial }{\partial r}+\frac{\hbar }{4{{m}_{0}}^{2}{{c}^{2}}}\frac{dV}{dr}\frac{1}{r}\bar{\sigma }\cdot \bar{L} \right){{\phi }_{a}}

TeX (checked):

\varepsilon {{\phi }_{a}}=\left({\frac {{p}^{2}}{2{{m}_{0}}}}+V(r)-{\frac {{p}^{4}}{8{{m}_{0}}^{3}{{c}^{2}}}}+{\frac {{\hbar }^{2}}{4{{m}_{0}}^{2}{{c}^{2}}}}{\frac {dV}{dr}}{\frac {1}{r}}{\frac {\partial }{\partial r}}+{\frac {\hbar }{4{{m}_{0}}^{2}{{c}^{2}}}}{\frac {dV}{dr}}{\frac {1}{r}}{\bar {\sigma }}\cdot {\bar {L}}\right){{\phi }_{a}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.367 KB / 475 B) :

εϕa=(p22m0+V(r)p48m03c2+24m02c2dVdr1rr+4m02c2dVdr1rσ¯L¯)ϕa
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mi>&#x03B5;</mi><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo>+</mo><mi>V</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>8</mn><msup><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><msup><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><msup><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>V</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der nichtrelativistische Grenzfall page

Identifiers

  • ε
  • ϕa
  • p
  • m0
  • V
  • r
  • p
  • m0
  • c
  • m0
  • c
  • d
  • V
  • d
  • r
  • r
  • r
  • m0
  • c
  • d
  • V
  • d
  • r
  • r
  • σ¯
  • L¯
  • ϕa

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results