Jump to navigation Jump to search

General

Display information for equation id:math.1819.26 on revision:1819

* Page found: Der nichtrelativistische Grenzfall (eq math.1819.26)

(force rerendering)

Occurrences on the following pages:

Hash: ce931ca4a65874f95645be21c0176906

TeX (original user input):

\begin{align}

& \left( \bar{\sigma }\bar{\pi } \right)\left( \bar{\sigma }\bar{\pi } \right)={{{\bar{\pi }}}^{2}}+i\bar{\sigma }\left( \bar{\pi }\times \bar{\pi } \right) \\

& \Rightarrow i\hbar {{{\dot{\phi }}}_{a}}=\left[ \frac{1}{2{{m}_{0}}}\left( {{{\bar{\pi }}}^{2}}+i\bar{\sigma }\left( \bar{\pi }\times \bar{\pi } \right) \right)+e\Phi  \right]{{\phi }_{a}} \\

\end{align}

TeX (checked):

{\begin{aligned}&\left({\bar {\sigma }}{\bar {\pi }}\right)\left({\bar {\sigma }}{\bar {\pi }}\right)={{\bar {\pi }}^{2}}+i{\bar {\sigma }}\left({\bar {\pi }}\times {\bar {\pi }}\right)\\&\Rightarrow i\hbar {{\dot {\phi }}_{a}}=\left[{\frac {1}{2{{m}_{0}}}}\left({{\bar {\pi }}^{2}}+i{\bar {\sigma }}\left({\bar {\pi }}\times {\bar {\pi }}\right)\right)+e\Phi \right]{{\phi }_{a}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.32 KB / 509 B) :

(σ¯π¯)(σ¯π¯)=π¯2+iσ¯(π¯×π¯)iϕ˙a=[12m0(π¯2+iσ¯(π¯×π¯))+eΦ]ϕa
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C0;</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C0;</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C0;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>i</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C0;</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C0;</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D5;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C0;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>i</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C0;</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C0;</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>e</mi><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der nichtrelativistische Grenzfall page

Identifiers

  • σ¯
  • π¯
  • σ¯
  • π¯
  • π¯
  • i
  • σ¯
  • π¯
  • π¯
  • i
  • ϕ˙a
  • m0
  • π¯
  • i
  • σ¯
  • π¯
  • π¯
  • e
  • Φ
  • ϕa

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results