Jump to navigation
		Jump to search
		
General
Display information for equation id:math.1818.40 on revision:1818
* Page found: Der nichtrelativistische Grenzfall (eq math.1818.40)
(force rerendering)Occurrences on the following pages:
Hash: 6849a06864bd32d510b57b0fcc50aebd
TeX (original user input):
\begin{align}
& \bar{J}:=\bar{L}+\frac{\hbar }{2}\tilde{\bar{\sigma }}=\bar{r}\times \bar{p}\left( \begin{matrix}
1 & 0  \\
0 & 1  \\
\end{matrix} \right)+\frac{\hbar }{2}\tilde{\bar{\sigma }} \\
& \bar{r}\times \bar{p}\left( \begin{matrix}
1 & 0  \\
0 & 1  \\
\end{matrix} \right)=\bar{r}\times \bar{p}\left( \begin{matrix}
1 & {} & {} & {}  \\
{} & 1 & {} & {}  \\
{} & {} & 1 & {}  \\
{} & {} & {} & 1  \\
\end{matrix} \right) \\
\end{align}
TeX (checked):
{\begin{aligned}&{\bar {J}}:={\bar {L}}+{\frac {\hbar }{2}}{\tilde {\bar {\sigma }}}={\bar {r}}\times {\bar {p}}\left({\begin{matrix}1&0\\0&1\\\end{matrix}}\right)+{\frac {\hbar }{2}}{\tilde {\bar {\sigma }}}\\&{\bar {r}}\times {\bar {p}}\left({\begin{matrix}1&0\\0&1\\\end{matrix}}\right)={\bar {r}}\times {\bar {p}}\left({\begin{matrix}1&{}&{}&{}\\{}&1&{}&{}\\{}&{}&1&{}\\{}&{}&{}&1\\\end{matrix}}\right)\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (3.326 KB / 459 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>J</mi><mo>¯</mo></mover></mrow></mrow><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">ℏ</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>σ</mi><mo>¯</mo></mover></mrow></mrow><mo>~</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">ℏ</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>σ</mi><mo>¯</mo></mover></mrow></mrow><mo>~</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>×</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd></mtd><mtd></mtd><mtd></mtd></mtr><mtr><mtd></mtd><mtd><mn>1</mn></mtd><mtd></mtd><mtd></mtd></mtr><mtr><mtd></mtd><mtd></mtd><mtd><mn>1</mn></mtd><mtd></mtd></mtr><mtr><mtd></mtd><mtd></mtd><mtd></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple: 
Translation to Mathematica
In Mathematica: 
Similar pages
Calculated based on the variables occurring on the entire Der nichtrelativistische Grenzfall page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results