Jump to navigation Jump to search

General

Display information for equation id:math.1818.40 on revision:1818

* Page found: Der nichtrelativistische Grenzfall (eq math.1818.40)

(force rerendering)

Occurrences on the following pages:

Hash: 6849a06864bd32d510b57b0fcc50aebd

TeX (original user input):

\begin{align}

& \bar{J}:=\bar{L}+\frac{\hbar }{2}\tilde{\bar{\sigma }}=\bar{r}\times \bar{p}\left( \begin{matrix}

1 & 0  \\

0 & 1  \\

\end{matrix} \right)+\frac{\hbar }{2}\tilde{\bar{\sigma }} \\

& \bar{r}\times \bar{p}\left( \begin{matrix}

1 & 0  \\

0 & 1  \\

\end{matrix} \right)=\bar{r}\times \bar{p}\left( \begin{matrix}

1 & {} & {} & {}  \\

{} & 1 & {} & {}  \\

{} & {} & 1 & {}  \\

{} & {} & {} & 1  \\

\end{matrix} \right) \\

\end{align}

TeX (checked):

{\begin{aligned}&{\bar {J}}:={\bar {L}}+{\frac {\hbar }{2}}{\tilde {\bar {\sigma }}}={\bar {r}}\times {\bar {p}}\left({\begin{matrix}1&0\\0&1\\\end{matrix}}\right)+{\frac {\hbar }{2}}{\tilde {\bar {\sigma }}}\\&{\bar {r}}\times {\bar {p}}\left({\begin{matrix}1&0\\0&1\\\end{matrix}}\right)={\bar {r}}\times {\bar {p}}\left({\begin{matrix}1&{}&{}&{}\\{}&1&{}&{}\\{}&{}&1&{}\\{}&{}&{}&1\\\end{matrix}}\right)\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.326 KB / 459 B) :

J¯:=L¯+2σ¯~=r¯×p¯(1001)+2σ¯~r¯×p¯(1001)=r¯×p¯(1111)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>J</mi><mo>¯</mo></mover></mrow></mrow><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>~</mo></mover></mrow></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>~</mo></mover></mrow></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd></mtd><mtd></mtd><mtd></mtd></mtr><mtr><mtd></mtd><mtd><mn>1</mn></mtd><mtd></mtd><mtd></mtd></mtr><mtr><mtd></mtd><mtd></mtd><mtd><mn>1</mn></mtd><mtd></mtd></mtr><mtr><mtd></mtd><mtd></mtd><mtd></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der nichtrelativistische Grenzfall page

Identifiers

  • J¯
  • L¯
  • σ¯~
  • r¯
  • p¯
  • σ¯~
  • r¯
  • p¯
  • r¯
  • p¯

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results