Jump to navigation Jump to search

General

Display information for equation id:math.1817.34 on revision:1817

* Page found: Der nichtrelativistische Grenzfall (eq math.1817.34)

(force rerendering)

Occurrences on the following pages:

Hash: 1307d49f6f75859b136f48cc5825ea1a

TeX (original user input):

{{\sigma }_{3}}{{\Psi }_{a}}={{\sigma }_{3}}\left( \begin{matrix}

{{\Psi }_{a\uparrow }}(\bar{r},t)  \\

{{\Psi }_{a\downarrow }}(\bar{r},t)  \\

\end{matrix} \right)=\left( \begin{matrix}

1 & 0  \\

0 & -1  \\

\end{matrix} \right)\left( \begin{matrix}

{{\Psi }_{a\uparrow }}(\bar{r},t)  \\

{{\Psi }_{a\downarrow }}(\bar{r},t)  \\

\end{matrix} \right)=\left( \begin{matrix}

{{\Psi }_{a\uparrow }}(\bar{r},t)  \\

-{{\Psi }_{a\downarrow }}(\bar{r},t)  \\

\end{matrix} \right)

TeX (checked):

{{\sigma }_{3}}{{\Psi }_{a}}={{\sigma }_{3}}\left({\begin{matrix}{{\Psi }_{a\uparrow }}({\bar {r}},t)\\{{\Psi }_{a\downarrow }}({\bar {r}},t)\\\end{matrix}}\right)=\left({\begin{matrix}1&0\\0&-1\\\end{matrix}}\right)\left({\begin{matrix}{{\Psi }_{a\uparrow }}({\bar {r}},t)\\{{\Psi }_{a\downarrow }}({\bar {r}},t)\\\end{matrix}}\right)=\left({\begin{matrix}{{\Psi }_{a\uparrow }}({\bar {r}},t)\\-{{\Psi }_{a\downarrow }}({\bar {r}},t)\\\end{matrix}}\right)

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.548 KB / 431 B) :

σ3Ψa=σ3(Ψa(r¯,t)Ψa(r¯,t))=(1001)(Ψa(r¯,t)Ψa(r¯,t))=(Ψa(r¯,t)Ψa(r¯,t))
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><msub><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mstyle><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mo>=</mo><msub><mi>&#x03C3;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mo>&#x2191;</mo></mrow></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mo>&#x2193;</mo></mrow></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mo>&#x2191;</mo></mrow></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mo>&#x2193;</mo></mrow></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mo>&#x2191;</mo></mrow></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mo>&#x2193;</mo></mrow></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der nichtrelativistische Grenzfall page

Identifiers

  • σ3
  • Ψa
  • σ3
  • Ψ
  • a
  • r¯
  • t
  • Ψ
  • a
  • r¯
  • t
  • Ψ
  • a
  • r¯
  • t
  • Ψ
  • a
  • r¯
  • t
  • Ψ
  • a
  • r¯
  • t
  • Ψ
  • a
  • r¯
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results