Jump to navigation
Jump to search
General
Display information for equation id:math.1817.34 on revision:1817
* Page found: Der nichtrelativistische Grenzfall (eq math.1817.34)
(force rerendering)Occurrences on the following pages:
Hash: 1307d49f6f75859b136f48cc5825ea1a
TeX (original user input):
{{\sigma }_{3}}{{\Psi }_{a}}={{\sigma }_{3}}\left( \begin{matrix}
{{\Psi }_{a\uparrow }}(\bar{r},t) \\
{{\Psi }_{a\downarrow }}(\bar{r},t) \\
\end{matrix} \right)=\left( \begin{matrix}
1 & 0 \\
0 & -1 \\
\end{matrix} \right)\left( \begin{matrix}
{{\Psi }_{a\uparrow }}(\bar{r},t) \\
{{\Psi }_{a\downarrow }}(\bar{r},t) \\
\end{matrix} \right)=\left( \begin{matrix}
{{\Psi }_{a\uparrow }}(\bar{r},t) \\
-{{\Psi }_{a\downarrow }}(\bar{r},t) \\
\end{matrix} \right)
TeX (checked):
{{\sigma }_{3}}{{\Psi }_{a}}={{\sigma }_{3}}\left({\begin{matrix}{{\Psi }_{a\uparrow }}({\bar {r}},t)\\{{\Psi }_{a\downarrow }}({\bar {r}},t)\\\end{matrix}}\right)=\left({\begin{matrix}1&0\\0&-1\\\end{matrix}}\right)\left({\begin{matrix}{{\Psi }_{a\uparrow }}({\bar {r}},t)\\{{\Psi }_{a\downarrow }}({\bar {r}},t)\\\end{matrix}}\right)=\left({\begin{matrix}{{\Psi }_{a\uparrow }}({\bar {r}},t)\\-{{\Psi }_{a\downarrow }}({\bar {r}},t)\\\end{matrix}}\right)
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (3.548 KB / 431 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><msub><mi>σ</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mstyle><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mo>=</mo><msub><mi>σ</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mo>↑</mo></mrow></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mo>↓</mo></mrow></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>−</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mo>↑</mo></mrow></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mo>↓</mo></mrow></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mo>↑</mo></mrow></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd><mo>−</mo><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>a</mi><mo>↓</mo></mrow></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Der nichtrelativistische Grenzfall page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results