Jump to navigation Jump to search

General

Display information for equation id:math.1817.29 on revision:1817

* Page found: Der nichtrelativistische Grenzfall (eq math.1817.29)

(force rerendering)

Occurrences on the following pages:

Hash: fa9c0a47f0a28e9de4d7a31f9060b32a

TeX (original user input):

i\hbar {{\dot{\phi }}_{a}}=\left[ \frac{1}{2{{m}_{0}}}\left( {{{\bar{\pi }}}^{2}}+i\bar{\sigma }\left( \bar{\pi }\times \bar{\pi } \right) \right)+e\Phi  \right]{{\phi }_{a}}=\left[ \frac{1}{2{{m}_{0}}}{{\left( \bar{p}-e\bar{A} \right)}^{2}}-\frac{1}{2{{m}_{0}}}e\hbar \bar{\sigma }\bar{B}+e\Phi  \right]{{\phi }_{a}}

TeX (checked):

i\hbar {{\dot {\phi }}_{a}}=\left[{\frac {1}{2{{m}_{0}}}}\left({{\bar {\pi }}^{2}}+i{\bar {\sigma }}\left({\bar {\pi }}\times {\bar {\pi }}\right)\right)+e\Phi \right]{{\phi }_{a}}=\left[{\frac {1}{2{{m}_{0}}}}{{\left({\bar {p}}-e{\bar {A}}\right)}^{2}}-{\frac {1}{2{{m}_{0}}}}e\hbar {\bar {\sigma }}{\bar {B}}+e\Phi \right]{{\phi }_{a}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.089 KB / 456 B) :

iϕ˙a=[12m0(π¯2+iσ¯(π¯×π¯))+eΦ]ϕa=[12m0(p¯eA¯)212m0eσ¯B¯+eΦ]ϕa
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D5;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C0;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>i</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C0;</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x00D7;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C0;</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mi>e</mi><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mi>e</mi><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>B</mi><mo>¯</mo></mover></mrow></mrow><mo>+</mo><mi>e</mi><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der nichtrelativistische Grenzfall page

Identifiers

  • i
  • ϕ˙a
  • m0
  • π¯
  • i
  • σ¯
  • π¯
  • π¯
  • e
  • Φ
  • ϕa
  • m0
  • p¯
  • e
  • A¯
  • m0
  • e
  • σ¯
  • B¯
  • e
  • Φ
  • ϕa

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results