Jump to navigation Jump to search

General

Display information for equation id:math.1802.23 on revision:1802

* Page found: Kovariante Schreibweise der Relativitätstheorie (eq math.1802.23)

(force rerendering)

Occurrences on the following pages:

Hash: 3362701f87b34bbae6dd5a3ab82c28cb

TeX (original user input):

\begin{align}

& {{p}^{i}}:={{m}_{0}}c{{u}^{i}} \\

& \Rightarrow {{p}^{i}}{{p}_{i}}={{m}_{0}}^{2}{{c}^{2}}{{u}^{i}}{{u}_{i}}={{m}_{0}}^{2}{{c}^{2}} \\

& {{p}^{0}}=\frac{{{m}_{0}}c}{\sqrt{1-{{\left( \frac{v}{c} \right)}^{2}}}}=m(v)c={{p}_{0}} \\

& {{p}^{\alpha }}=\frac{{{m}_{0}}{{v}^{\alpha }}}{\sqrt{1-{{\left( \frac{v}{c} \right)}^{2}}}}=m(v){{v}^{\alpha }}=-{{p}_{\alpha }} \\

\end{align}

TeX (checked):

{\begin{aligned}&{{p}^{i}}:={{m}_{0}}c{{u}^{i}}\\&\Rightarrow {{p}^{i}}{{p}_{i}}={{m}_{0}}^{2}{{c}^{2}}{{u}^{i}}{{u}_{i}}={{m}_{0}}^{2}{{c}^{2}}\\&{{p}^{0}}={\frac {{{m}_{0}}c}{\sqrt {1-{{\left({\frac {v}{c}}\right)}^{2}}}}}=m(v)c={{p}_{0}}\\&{{p}^{\alpha }}={\frac {{{m}_{0}}{{v}^{\alpha }}}{\sqrt {1-{{\left({\frac {v}{c}}\right)}^{2}}}}}=m(v){{v}^{\alpha }}=-{{p}_{\alpha }}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.453 KB / 510 B) :

pi:=m0cuipipi=m02c2uiui=m02c2p0=m0c1(vc)2=m(v)c=p0pα=m0vα1(vc)2=m(v)vα=pα
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mi>:</mi><mo>=</mo><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi><msup><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><msup><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><msup><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>c</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>v</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mrow></mfrac></mrow><mo>=</mo><mi>m</mi><mo stretchy="false">(</mo><mi>v</mi><mo stretchy="false">)</mo><mi>c</mi><mo>=</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mn>1</mn><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>v</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mrow></mfrac></mrow><mo>=</mo><mi>m</mi><mo stretchy="false">(</mo><mi>v</mi><mo stretchy="false">)</mo><msup><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msup><mo>=</mo><mo>&#x2212;</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Kovariante Schreibweise der Relativitätstheorie page

Identifiers

  • p
  • i
  • m0
  • c
  • u
  • i
  • p
  • i
  • pi
  • m0
  • c
  • u
  • i
  • ui
  • m0
  • c
  • p
  • m0
  • c
  • v
  • c
  • m
  • v
  • c
  • p0
  • p
  • α
  • m0
  • v
  • α
  • v
  • c
  • m
  • v
  • v
  • α
  • pα

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results