Jump to navigation Jump to search

General

Display information for equation id:math.1802.18 on revision:1802

* Page found: Kovariante Schreibweise der Relativitätstheorie (eq math.1802.18)

(force rerendering)

Occurrences on the following pages:

Hash: 62664497193c7fd6a0dfd76bc78e50a2

TeX (original user input):

\begin{align}

& {{u}^{i}}:=\frac{d{{x}^{i}}}{ds} \\

& ds={{\left( d{{x}^{i}}d{{x}_{i}} \right)}^{\frac{1}{2}}}={{\left( {{c}^{2}}d{{t}^{2}}-{{\left( d\bar{r} \right)}^{2}} \right)}^{\frac{1}{2}}}=c{{\left[ 1-{{\left( \frac{1}{c}\frac{d\bar{r}}{dt} \right)}^{2}} \right]}^{\frac{1}{2}}}dt \\

& ds:={{\left( 1-{{\beta }^{2}} \right)}^{\frac{1}{2}}}dt=\frac{c}{\gamma }dt \\

\end{align}

TeX (checked):

{\begin{aligned}&{{u}^{i}}:={\frac {d{{x}^{i}}}{ds}}\\&ds={{\left(d{{x}^{i}}d{{x}_{i}}\right)}^{\frac {1}{2}}}={{\left({{c}^{2}}d{{t}^{2}}-{{\left(d{\bar {r}}\right)}^{2}}\right)}^{\frac {1}{2}}}=c{{\left[1-{{\left({\frac {1}{c}}{\frac {d{\bar {r}}}{dt}}\right)}^{2}}\right]}^{\frac {1}{2}}}dt\\&ds:={{\left(1-{{\beta }^{2}}\right)}^{\frac {1}{2}}}dt={\frac {c}{\gamma }}dt\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.773 KB / 507 B) :

ui:=dxidsds=(dxidxi)12=(c2dt2(dr¯)2)12=c[1(1cdr¯dt)2]12dtds:=(1β2)12dt=cγdt
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>s</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>d</mi><mi>s</mi><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>d</mi><msup><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mi>d</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>c</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>d</mi><msup><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><mo>=</mo><mi>c</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mn>1</mn><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><mi>d</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>d</mi><mi>s</mi><mi>:</mi><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>&#x2212;</mo><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><mi>d</mi><mi>t</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow><mrow data-mjx-texclass="ORD"><mi>&#x03B3;</mi></mrow></mfrac></mrow><mi>d</mi><mi>t</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Kovariante Schreibweise der Relativitätstheorie page

Identifiers

  • u
  • i
  • d
  • x
  • i
  • d
  • s
  • d
  • s
  • d
  • x
  • i
  • d
  • xi
  • c
  • d
  • t
  • d
  • r¯
  • c
  • c
  • d
  • r¯
  • d
  • t
  • d
  • t
  • d
  • s
  • β
  • d
  • t
  • c
  • γ
  • d
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results