Jump to navigation Jump to search

General

Display information for equation id:math.1798.45 on revision:1798

* Page found: Kovariante Schreibweise der Relativitätstheorie (eq math.1798.45)

(force rerendering)

Occurrences on the following pages:

Hash: 64989f59b8e316014bd5379856545d62

TeX (original user input):

\begin{align}

& a{{\acute{\ }}^{i}}={{U}^{i}}_{k}{{a}^{k}} \\

& b{{\acute{\ }}^{i}}={{U}^{i}}_{k}{{b}^{k}}\Rightarrow b{{\acute{\ }}_{i}}={{U}_{ik}}{{b}^{k}}={{U}_{i}}^{k}{{b}_{k}} \\

& a{{\acute{\ }}^{i}}b{{\acute{\ }}_{i}}={{U}^{i}}_{k}{{U}_{i}}^{l}{{a}^{k}}{{b}_{l}}=!={{a}^{k}}{{b}_{k}} \\

& also\Rightarrow : \\

& {{U}^{i}}_{k}{{U}_{i}}^{l}={{\delta }_{k}}^{l} \\

\end{align}

TeX (checked):

{\begin{aligned}&a{{\acute {\ }}^{i}}={{U}^{i}}_{k}{{a}^{k}}\\&b{{\acute {\ }}^{i}}={{U}^{i}}_{k}{{b}^{k}}\Rightarrow b{{\acute {\ }}_{i}}={{U}_{ik}}{{b}^{k}}={{U}_{i}}^{k}{{b}_{k}}\\&a{{\acute {\ }}^{i}}b{{\acute {\ }}_{i}}={{U}^{i}}_{k}{{U}_{i}}^{l}{{a}^{k}}{{b}_{l}}=!={{a}^{k}}{{b}_{k}}\\&also\Rightarrow :\\&{{U}^{i}}_{k}{{U}_{i}}^{l}={{\delta }_{k}}^{l}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.513 KB / 459 B) :

a´i=Uikakb´i=Uikbkb´i=Uikbk=Uikbka´ib´i=UikUilakbl=!=akbkalso:UikUil=δkl
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>a</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mo>=</mo><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mi>b</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mo>=</mo><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><mi>b</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup><mo>&#x21D2;</mo><mi>b</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi></mrow></mrow></msub><msup><mi>b</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup><mo>=</mo><msup><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup><msub><mi>b</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mi>a</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mi>b</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msup><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup><msub><mi>b</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo>=</mo><mi>!</mi><mo>=</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup><msub><mi>b</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mi>a</mi><mi>l</mi><mi>s</mi><mi>o</mi><mo>&#x21D2;</mo><mi>:</mi></mtd></mtr><mtr><mtd></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msup><mo>=</mo><msup><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Kovariante Schreibweise der Relativitätstheorie page

Identifiers

  • a
  • ´
  • i
  • U
  • i
  • k
  • a
  • k
  • b
  • ´
  • i
  • U
  • i
  • k
  • b
  • k
  • b
  • ´i
  • Uik
  • b
  • k
  • Ui
  • k
  • bk
  • a
  • ´
  • i
  • b
  • ´i
  • U
  • i
  • k
  • Ui
  • l
  • a
  • k
  • bl
  • a
  • k
  • bk
  • a
  • l
  • s
  • o
  • U
  • i
  • k
  • Ui
  • l
  • δk
  • l

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results