Jump to navigation
Jump to search
General
Display information for equation id:math.1798.45 on revision:1798
* Page found: Kovariante Schreibweise der Relativitätstheorie (eq math.1798.45)
(force rerendering)Occurrences on the following pages:
Hash: 64989f59b8e316014bd5379856545d62
TeX (original user input):
\begin{align}
& a{{\acute{\ }}^{i}}={{U}^{i}}_{k}{{a}^{k}} \\
& b{{\acute{\ }}^{i}}={{U}^{i}}_{k}{{b}^{k}}\Rightarrow b{{\acute{\ }}_{i}}={{U}_{ik}}{{b}^{k}}={{U}_{i}}^{k}{{b}_{k}} \\
& a{{\acute{\ }}^{i}}b{{\acute{\ }}_{i}}={{U}^{i}}_{k}{{U}_{i}}^{l}{{a}^{k}}{{b}_{l}}=!={{a}^{k}}{{b}_{k}} \\
& also\Rightarrow : \\
& {{U}^{i}}_{k}{{U}_{i}}^{l}={{\delta }_{k}}^{l} \\
\end{align}
TeX (checked):
{\begin{aligned}&a{{\acute {\ }}^{i}}={{U}^{i}}_{k}{{a}^{k}}\\&b{{\acute {\ }}^{i}}={{U}^{i}}_{k}{{b}^{k}}\Rightarrow b{{\acute {\ }}_{i}}={{U}_{ik}}{{b}^{k}}={{U}_{i}}^{k}{{b}_{k}}\\&a{{\acute {\ }}^{i}}b{{\acute {\ }}_{i}}={{U}^{i}}_{k}{{U}_{i}}^{l}{{a}^{k}}{{b}_{l}}=!={{a}^{k}}{{b}_{k}}\\&also\Rightarrow :\\&{{U}^{i}}_{k}{{U}_{i}}^{l}={{\delta }_{k}}^{l}\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (3.513 KB / 459 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>a</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mo>=</mo><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mi>b</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mo>=</mo><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><mi>b</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup><mo>⇒</mo><mi>b</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi></mrow></mrow></msub><msup><mi>b</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup><mo>=</mo><msup><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup><msub><mi>b</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mi>a</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mi>b</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msup><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup><msub><mi>b</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo>=</mo><mi>!</mi><mo>=</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msup><msub><mi>b</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mi>a</mi><mi>l</mi><mi>s</mi><mi>o</mi><mo>⇒</mo><mi>:</mi></mtd></mtr><mtr><mtd></mtd><mtd><msub><msup><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msup><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msup><mo>=</mo><msup><msub><mi>δ</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Kovariante Schreibweise der Relativitätstheorie page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results