Jump to navigation Jump to search

General

Display information for equation id:math.1798.28 on revision:1798

* Page found: Kovariante Schreibweise der Relativitätstheorie (eq math.1798.28)

(force rerendering)

Occurrences on the following pages:

Hash: 813348f8728231b35dc7711cfbdb2c2b

TeX (original user input):

\begin{align}

& {{k}^{i}}{{u}_{i}}=\frac{d}{d\tau }\left( {{p}^{0}} \right){{u}_{0}}+{{k}^{\alpha }}{{u}_{\alpha }}=\gamma \frac{d}{d\tau }\left( {{p}^{0}} \right)+\frac{\gamma }{c}{{k}^{\alpha }}{{v}_{\alpha }}=\frac{\gamma }{c}\left[ \frac{d}{d\tau }\left( c{{p}^{0}} \right)-\bar{k}\bar{v} \right]=0 \\

& \left( c{{p}^{0}} \right)=Energie \\

& \bar{k}\bar{v}=Leistung \\

\end{align}

TeX (checked):

{\begin{aligned}&{{k}^{i}}{{u}_{i}}={\frac {d}{d\tau }}\left({{p}^{0}}\right){{u}_{0}}+{{k}^{\alpha }}{{u}_{\alpha }}=\gamma {\frac {d}{d\tau }}\left({{p}^{0}}\right)+{\frac {\gamma }{c}}{{k}^{\alpha }}{{v}_{\alpha }}={\frac {\gamma }{c}}\left[{\frac {d}{d\tau }}\left(c{{p}^{0}}\right)-{\bar {k}}{\bar {v}}\right]=0\\&\left(c{{p}^{0}}\right)=Energie\\&{\bar {k}}{\bar {v}}=Leistung\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.429 KB / 511 B) :

kiui=ddτ(p0)u0+kαuα=γddτ(p0)+γckαvα=γc[ddτ(cp0)k¯v¯]=0(cp0)=Energiek¯v¯=Leistung
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03C4;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>+</mo><msup><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msup><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><mo>=</mo><mi>&#x03B3;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03C4;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03B3;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><msup><mi>k</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msup><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x03B3;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>d</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03C4;</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>c</mi><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>c</mi><msup><mi>p</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>E</mi><mi>n</mi><mi>e</mi><mi>r</mi><mi>g</mi><mi>i</mi><mi>e</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>k</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>v</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mi>L</mi><mi>e</mi><mi>i</mi><mi>s</mi><mi>t</mi><mi>u</mi><mi>n</mi><mi>g</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Kovariante Schreibweise der Relativitätstheorie page

Identifiers

  • k
  • i
  • ui
  • d
  • d
  • τ
  • p
  • u0
  • k
  • α
  • uα
  • γ
  • d
  • d
  • τ
  • p
  • γ
  • c
  • k
  • α
  • vα
  • γ
  • c
  • d
  • d
  • τ
  • c
  • p
  • k¯
  • v¯
  • c
  • p
  • E
  • n
  • e
  • r
  • g
  • i
  • e
  • k¯
  • v¯
  • L
  • e
  • i
  • s
  • t
  • u
  • n
  • g

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results