Jump to navigation Jump to search

General

Display information for equation id:math.1758.33 on revision:1758

* Page found: Homöopolare chemische Bindung des Wasserstoffmoleküls (eq math.1758.33)

(force rerendering)

Occurrences on the following pages:

Hash: 3bbdb6b2c2a62a8d48fea552f0b88bbb

TeX (original user input):

\begin{align}
& {{\Psi }_{\pm }}^{(0)}=\frac{1}{\sqrt{2\left( 1\pm |T{{|}^{2}} \right)}}\left( {{\left| a \right\rangle }_{1}}{{\left| b \right\rangle }_{2}}\pm {{\left| a \right\rangle }_{2}}{{\left| b \right\rangle }_{1}} \right) \\
& {{\left| a \right\rangle }_{1}}{{\left| b \right\rangle }_{2}}={{\Psi }_{\alpha }} \\
& {{\left| a \right\rangle }_{2}}{{\left| b \right\rangle }_{1}}={{\Psi }_{\beta }} \\
\end{align}

TeX (checked):

{\begin{aligned}&{{\Psi }_{\pm }}^{(0)}={\frac {1}{\sqrt {2\left(1\pm |T{{|}^{2}}\right)}}}\left({{\left|a\right\rangle }_{1}}{{\left|b\right\rangle }_{2}}\pm {{\left|a\right\rangle }_{2}}{{\left|b\right\rangle }_{1}}\right)\\&{{\left|a\right\rangle }_{1}}{{\left|b\right\rangle }_{2}}={{\Psi }_{\alpha }}\\&{{\left|a\right\rangle }_{2}}{{\left|b\right\rangle }_{1}}={{\Psi }_{\beta }}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.031 KB / 485 B) :

Ψ±(0)=12(1±|T|2)(|a1|b2±|a2|b1)|a1|b2=Ψα|a2|b1=Ψβ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mn>2</mn><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>&#x00B1;</mo><mo>|</mo><mi>T</mi><msup><mo>|</mo><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msqrt></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>&#x00B1;</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B1;</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>=</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Homöopolare chemische Bindung des Wasserstoffmoleküls page

Identifiers

  • Ψ
  • T
  • a1
  • b2
  • a2
  • b1
  • a1
  • b2
  • Ψα
  • a2
  • b1
  • Ψβ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results