Jump to navigation Jump to search

General

Display information for equation id:math.1732.116 on revision:1732

* Page found: Zeitabhängige Störungsrechnung (eq math.1732.116)

(force rerendering)

Occurrences on the following pages:

Hash: 4c60a138ea2e91c6428b103e525a1b58

TeX (original user input):

\begin{align}
& {{\left| \Psi  \right\rangle }_{W}}(t)={{\left| \Psi  \right\rangle }_{W}}(t=0)-\frac{i}{\hbar }\int_{0}^{t}{{}}d\tau \left( {{{\hat{H}}}_{W}}^{1}(\tau ){{\left| \Psi  \right\rangle }_{W}}(\tau ) \right)\approx \left( 1-\frac{i}{\hbar }\int_{0}^{t}{d\tau }{{{\hat{H}}}_{W}}^{1}(\tau ) \right)\left| {{n}_{0}} \right\rangle  \\
& {{\left| \Psi  \right\rangle }_{W}}(t)\approx \left( 1-\frac{i}{\hbar }\int_{0}^{t}{d\tau }{{{\hat{H}}}_{W}}^{1}(\tau ) \right)\left| {{n}_{0}} \right\rangle =\left( 1-\frac{i}{\hbar }\int_{0}^{t}{d\tau }{{e}^{\frac{i}{\hbar }{{{\hat{H}}}^{0}}\tau }}{{{\hat{H}}}_{S}}^{1}{{e}^{-\frac{i}{\hbar }{{{\hat{H}}}^{0}}\tau }} \right)\left| {{n}_{0}} \right\rangle  \\
\end{align}

TeX (checked):

{\begin{aligned}&{{\left|\Psi \right\rangle }_{W}}(t)={{\left|\Psi \right\rangle }_{W}}(t=0)-{\frac {i}{\hbar }}\int _{0}^{t}{}d\tau \left({{\hat {H}}_{W}}^{1}(\tau ){{\left|\Psi \right\rangle }_{W}}(\tau )\right)\approx \left(1-{\frac {i}{\hbar }}\int _{0}^{t}{d\tau }{{\hat {H}}_{W}}^{1}(\tau )\right)\left|{{n}_{0}}\right\rangle \\&{{\left|\Psi \right\rangle }_{W}}(t)\approx \left(1-{\frac {i}{\hbar }}\int _{0}^{t}{d\tau }{{\hat {H}}_{W}}^{1}(\tau )\right)\left|{{n}_{0}}\right\rangle =\left(1-{\frac {i}{\hbar }}\int _{0}^{t}{d\tau }{{e}^{{\frac {i}{\hbar }}{{\hat {H}}^{0}}\tau }}{{\hat {H}}_{S}}^{1}{{e}^{-{\frac {i}{\hbar }}{{\hat {H}}^{0}}\tau }}\right)\left|{{n}_{0}}\right\rangle \\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (6.431 KB / 620 B) :

|ΨW(t)=|ΨW(t=0)i0tdτ(H^W1(τ)|ΨW(τ))(1i0tdτH^W1(τ))|n0|ΨW(t)(1i0tdτH^W1(τ))|n0=(1i0tdτeiH^0τH^S1eiH^0τ)|n0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo>=</mo><mn>0</mn><mo stretchy="false">)</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></munderover></mstyle><mi>d</mi><mi>&#x03C4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>&#x03C4;</mi><mo stretchy="false">)</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><mo stretchy="false">(</mo><mi>&#x03C4;</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2248;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03C4;</mi></mrow><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>&#x03C4;</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>&#x2248;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03C4;</mi></mrow><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>W</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><mo stretchy="false">(</mo><mi>&#x03C4;</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>1</mn><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>&#x03C4;</mi></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mi>&#x03C4;</mi></mrow></mrow></msup><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msup><mi>&#x03C4;</mi></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>n</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Zeitabhängige Störungsrechnung page

Identifiers

  • ΨW
  • t
  • ΨW
  • t
  • i
  • t
  • τ
  • H^W
  • τ
  • ΨW
  • τ
  • i
  • t
  • τ
  • H^W
  • τ
  • n0
  • ΨW
  • t
  • i
  • t
  • τ
  • H^W
  • τ
  • n0
  • i
  • t
  • τ
  • e
  • i
  • H^
  • τ
  • H^S
  • e
  • i
  • H^
  • τ
  • n0

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results