Jump to navigation Jump to search

General

Display information for equation id:math.1719.79 on revision:1719

* Page found: Identische Teilchen: Spin und Statistik (eq math.1719.79)

(force rerendering)

Occurrences on the following pages:

Hash: 7bd88dee53e7e71b3df7997364cf4a3f

TeX (original user input):

\left\langle  {{{\bar{r}}}_{1}}...{{{\hat{r}}}_{N}} \right|{{\left| {{a}_{1}},...,{{a}_{N}} \right\rangle }_{a}}^{-}={{\Psi }^{-}}\left( {{{\bar{r}}}_{1}},...,{{{\bar{r}}}_{N}} \right)=\frac{1}{\sqrt{N!}}\left| \begin{matrix}
{{\Psi }_{{{a}_{1}}}}\left( {{{\bar{r}}}_{1}} \right) & {{\Psi }_{{{a}_{1}}}}\left( {{{\bar{r}}}_{2}} \right) & ... & {{\Psi }_{{{a}_{1}}}}\left( {{{\bar{r}}}_{N}} \right)  \\
{{\Psi }_{{{a}_{2}}}}\left( {{{\bar{r}}}_{1}} \right) & {{\Psi }_{{{a}_{2}}}}\left( {{{\bar{r}}}_{2}} \right) & ... & {{\Psi }_{{{a}_{2}}}}\left( {{{\bar{r}}}_{N}} \right)  \\
... & ... & ... & ...  \\
{{\Psi }_{{{a}_{N}}}}\left( {{{\bar{r}}}_{1}} \right) & {{\Psi }_{{{a}_{N}}}}\left( {{{\bar{r}}}_{2}} \right) & ... & {{\Psi }_{{{a}_{N}}}}\left( {{{\bar{r}}}_{N}} \right)  \\
\end{matrix} \right|

TeX (checked):

\left\langle {{\bar {r}}_{1}}...{{\hat {r}}_{N}}\right|{{\left|{{a}_{1}},...,{{a}_{N}}\right\rangle }_{a}}^{-}={{\Psi }^{-}}\left({{\bar {r}}_{1}},...,{{\bar {r}}_{N}}\right)={\frac {1}{\sqrt {N!}}}\left|{\begin{matrix}{{\Psi }_{{a}_{1}}}\left({{\bar {r}}_{1}}\right)&{{\Psi }_{{a}_{1}}}\left({{\bar {r}}_{2}}\right)&...&{{\Psi }_{{a}_{1}}}\left({{\bar {r}}_{N}}\right)\\{{\Psi }_{{a}_{2}}}\left({{\bar {r}}_{1}}\right)&{{\Psi }_{{a}_{2}}}\left({{\bar {r}}_{2}}\right)&...&{{\Psi }_{{a}_{2}}}\left({{\bar {r}}_{N}}\right)\\...&...&...&...\\{{\Psi }_{{a}_{N}}}\left({{\bar {r}}_{1}}\right)&{{\Psi }_{{a}_{N}}}\left({{\bar {r}}_{2}}\right)&...&{{\Psi }_{{a}_{N}}}\left({{\bar {r}}_{N}}\right)\\\end{matrix}}\right|

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (6.402 KB / 543 B) :

r¯1...r^N||a1,...,aNa=Ψ(r¯1,...,r¯N)=1N!|Ψa1(r¯1)Ψa1(r¯2)...Ψa1(r¯N)Ψa2(r¯1)Ψa2(r¯2)...Ψa2(r¯N)............ΨaN(r¯1)ΨaN(r¯2)...ΨaN(r¯N)|
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>.</mo><mo>.</mo><mo>.</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo></mrow></msup><mo>=</mo><msup><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mi>N</mi><mi>!</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Identische Teilchen: Spin und Statistik page

Identifiers

  • r¯1
  • r^N
  • a1
  • aN
  • a
  • Ψ
  • r¯1
  • r¯N
  • N
  • Ψa1
  • r¯1
  • Ψa1
  • r¯2
  • Ψa1
  • r¯N
  • Ψa2
  • r¯1
  • Ψa2
  • r¯2
  • Ψa2
  • r¯N
  • ΨaN
  • r¯1
  • ΨaN
  • r¯2
  • ΨaN
  • r¯N

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results