Jump to navigation Jump to search

General

Display information for equation id:math.1718.78 on revision:1718

* Page found: Identische Teilchen: Spin und Statistik (eq math.1718.78)

(force rerendering)

Occurrences on the following pages:

Hash: 8e4bca5dddcad8e98fa7c0b767f4f7f9

TeX (original user input):

{{\left| {{a}_{1}},...,{{a}_{N}} \right\rangle }_{a}}^{-}=\sqrt{N!}\hat{A}\left( {{\left| {{a}_{1}} \right\rangle }_{1}}...{{\left| {{a}_{N}} \right\rangle }_{N}} \right)=\frac{1}{\sqrt{N!}}\left| \begin{matrix}
{{\left| {{a}_{1}} \right\rangle }_{1}} & {{\left| {{a}_{1}} \right\rangle }_{2}} & ... & {{\left| {{a}_{1}} \right\rangle }_{N}}  \\
{{\left| {{a}_{2}} \right\rangle }_{1}} & {{\left| {{a}_{2}} \right\rangle }_{2}} & ... & {{\left| {{a}_{2}} \right\rangle }_{N}}  \\
... & ... & ... & ...  \\
{{\left| {{a}_{N}} \right\rangle }_{1}} & {{\left| {{a}_{N}} \right\rangle }_{2}} & ... & {{\left| {{a}_{N}} \right\rangle }_{N}}  \\
\end{matrix} \right|

TeX (checked):

{{\left|{{a}_{1}},...,{{a}_{N}}\right\rangle }_{a}}^{-}={\sqrt {N!}}{\hat {A}}\left({{\left|{{a}_{1}}\right\rangle }_{1}}...{{\left|{{a}_{N}}\right\rangle }_{N}}\right)={\frac {1}{\sqrt {N!}}}\left|{\begin{matrix}{{\left|{{a}_{1}}\right\rangle }_{1}}&{{\left|{{a}_{1}}\right\rangle }_{2}}&...&{{\left|{{a}_{1}}\right\rangle }_{N}}\\{{\left|{{a}_{2}}\right\rangle }_{1}}&{{\left|{{a}_{2}}\right\rangle }_{2}}&...&{{\left|{{a}_{2}}\right\rangle }_{N}}\\...&...&...&...\\{{\left|{{a}_{N}}\right\rangle }_{1}}&{{\left|{{a}_{N}}\right\rangle }_{2}}&...&{{\left|{{a}_{N}}\right\rangle }_{N}}\\\end{matrix}}\right|

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (4.49 KB / 468 B) :

|a1,...,aNa=N!A^(|a11...|aNN)=1N!||a11|a12...|a1N|a21|a22...|a2N............|aN1|aN2...|aNN|
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><msup><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>a</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mi>N</mi><mi>!</mi></mrow></msqrt></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>.</mo><mo>.</mo><mo>.</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mi>N</mi><mi>!</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd></mtr><mtr><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd><mtd><mo>.</mo><mo>.</mo><mo>.</mo></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>a</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Identische Teilchen: Spin und Statistik page

Identifiers

  • a1
  • aN
  • a
  • N
  • A^
  • a11
  • aNN
  • N
  • a11
  • a12
  • a1N
  • a21
  • a22
  • a2N
  • aN1
  • aN2
  • aNN

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results