Jump to navigation Jump to search

General

Display information for equation id:math.1717.22 on revision:1717

* Page found: Identische Teilchen: Spin und Statistik (eq math.1717.22)

(force rerendering)

Occurrences on the following pages:

Hash: e7e96d96aba145c7dfd7ecda660c0b9f

TeX (original user input):

\begin{align}

& {{\left| {{{\hat{p}}}_{\left( ij \right)}}\Psi ({{q}_{1}},{{q}_{2}}...,{{q}_{N}},t) \right|}^{2}}={{\left| \Psi ({{q}_{1}},{{q}_{2}}...,{{q}_{N}},t) \right|}^{2}}=1={{\left| {{\lambda }_{ij}}\Psi ({{q}_{1}},{{q}_{2}}...,{{q}_{N}},t) \right|}^{2}} \\
& \Rightarrow {{\left| {{\lambda }_{ij}} \right|}^{2}}=1 \\
& \Rightarrow {{\lambda }_{ij}}=\pm 1 \\
\end{align}

TeX (checked):

{\begin{aligned}&{{\left|{{\hat {p}}_{\left(ij\right)}}\Psi ({{q}_{1}},{{q}_{2}}...,{{q}_{N}},t)\right|}^{2}}={{\left|\Psi ({{q}_{1}},{{q}_{2}}...,{{q}_{N}},t)\right|}^{2}}=1={{\left|{{\lambda }_{ij}}\Psi ({{q}_{1}},{{q}_{2}}...,{{q}_{N}},t)\right|}^{2}}\\&\Rightarrow {{\left|{{\lambda }_{ij}}\right|}^{2}}=1\\&\Rightarrow {{\lambda }_{ij}}=\pm 1\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.038 KB / 474 B) :

|p^(ij)Ψ(q1,q2...,qN,t)|2=|Ψ(q1,q2...,qN,t)|2=1=|λijΨ(q1,q2...,qN,t)|2|λij|2=1λij=±1
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>i</mi><mi>j</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></msub><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>,</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mi>q</mi><mrow data-mjx-texclass="ORD"><mi>N</mi></mrow></msub><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>j</mi></mrow></mrow></msub><mo>=</mo><mo>&#x00B1;</mo><mn>1</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Identische Teilchen: Spin und Statistik page

Identifiers

  • p^
  • i
  • j
  • Ψ
  • q1
  • q2
  • qN
  • t
  • Ψ
  • q1
  • q2
  • qN
  • t
  • λij
  • Ψ
  • q1
  • q2
  • qN
  • t
  • λij
  • λij

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results