Jump to navigation Jump to search

General

Display information for equation id:math.1712.15 on revision:1712

* Page found: Addition von Drehimpulsen (eq math.1712.15)

(force rerendering)

Occurrences on the following pages:

Hash: 7c52441f5f9e1912b2221fb7ad0eaf9f

TeX (original user input):

\begin{align}

& {{{\hat{J}}}^{2}}\left| j{{m}_{j}}ls \right\rangle ={{\hbar }^{2}}(j(j+1))\left| j{{m}_{j}}ls \right\rangle  \\

& {{{\hat{J}}}_{3}}\left| j{{m}_{j}}ls \right\rangle =\hbar {{m}_{j}}\left| j{{m}_{j}}ls \right\rangle  \\

& {{{\hat{L}}}^{2}}\left| j{{m}_{j}}ls \right\rangle ={{\hbar }^{2}}(l(l+1)\left| j{{m}_{j}}ls \right\rangle  \\

& {{{\hat{\bar{S}}}}^{2}}\left| j{{m}_{j}}ls \right\rangle ={{\hbar }^{2}}(s(s+1)\left| j{{m}_{j}}ls \right\rangle  \\

\end{align}

TeX (checked):

{\begin{aligned}&{{\hat {J}}^{2}}\left|j{{m}_{j}}ls\right\rangle ={{\hbar }^{2}}(j(j+1))\left|j{{m}_{j}}ls\right\rangle \\&{{\hat {J}}_{3}}\left|j{{m}_{j}}ls\right\rangle =\hbar {{m}_{j}}\left|j{{m}_{j}}ls\right\rangle \\&{{\hat {L}}^{2}}\left|j{{m}_{j}}ls\right\rangle ={{\hbar }^{2}}(l(l+1)\left|j{{m}_{j}}ls\right\rangle \\&{{\hat {\bar {S}}}^{2}}\left|j{{m}_{j}}ls\right\rangle ={{\hbar }^{2}}(s(s+1)\left|j{{m}_{j}}ls\right\rangle \\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.816 KB / 478 B) :

J^2|jmjls=2(j(j+1))|jmjlsJ^3|jmjls=mj|jmjlsL^2|jmjls=2(l(l+1)|jmjlsS¯^2|jmjls=2(s(s+1)|jmjls
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>J</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>j</mi><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mi>l</mi><mi>s</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo stretchy="false">(</mo><mi>j</mi><mo stretchy="false">(</mo><mi>j</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>j</mi><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mi>l</mi><mi>s</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>J</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>j</mi><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mi>l</mi><mi>s</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mi data-mjx-alternate="1">&#x210F;</mi><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>j</mi><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mi>l</mi><mi>s</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>j</mi><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mi>l</mi><mi>s</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo stretchy="false">(</mo><mi>l</mi><mo stretchy="false">(</mo><mi>l</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>j</mi><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mi>l</mi><mi>s</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>S</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>j</mi><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mi>l</mi><mi>s</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo stretchy="false">(</mo><mi>s</mi><mo stretchy="false">(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>j</mi><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mi>l</mi><mi>s</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Addition von Drehimpulsen page

Identifiers

  • J^
  • j
  • mj
  • l
  • s
  • j
  • j
  • j
  • mj
  • l
  • s
  • J^3
  • j
  • mj
  • l
  • s
  • mj
  • j
  • mj
  • l
  • s
  • L^
  • j
  • mj
  • l
  • s
  • l
  • l
  • j
  • mj
  • l
  • s
  • S¯^
  • j
  • mj
  • l
  • s
  • s
  • s
  • j
  • mj
  • l
  • s

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results