Jump to navigation Jump to search

General

Display information for equation id:math.1702.34 on revision:1702

* Page found: Zustände mit Bahn- und Spinvariablen (eq math.1702.34)

(force rerendering)

Occurrences on the following pages:

Hash: 4ee9d8c45e130c51fc6a6e1ed818d035

TeX (original user input):

\begin{align}
& \left( \begin{matrix}

{{{\hat{H}}}_{\acute{\ }B}}+\hbar {{\omega }_{l}} & 0 \\
0 & {{{\hat{H}}}_{\acute{\ }B}}-\hbar {{\omega }_{l}} \\
\end{matrix} \right)\left( \begin{matrix}

{{\left| {{\Psi }_{1}} \right\rangle }_{t}} \\

{{\left| {{\Psi }_{2}} \right\rangle }_{t}} \\
\end{matrix} \right)=i\hbar \frac{\partial }{\partial t}\left( \begin{matrix}

{{\left| {{\Psi }_{1}} \right\rangle }_{t}} \\

{{\left| {{\Psi }_{2}} \right\rangle }_{t}} \\
\end{matrix} \right) \\
& \Leftrightarrow \left( {{{\hat{H}}}_{\acute{\ }B}}+\hbar {{\omega }_{l}} \right){{\left| {{\Psi }_{1}} \right\rangle }_{t}}=i\hbar \frac{\partial }{\partial t}{{\left| {{\Psi }_{1}} \right\rangle }_{t}} \\
& \left( {{{\hat{H}}}_{\acute{\ }B}}-\hbar {{\omega }_{l}} \right){{\left| {{\Psi }_{2}} \right\rangle }_{t}}=i\hbar \frac{\partial }{\partial t}{{\left| {{\Psi }_{2}} \right\rangle }_{t}} \\
\end{align}

TeX (checked):

{\begin{aligned}&\left({\begin{matrix}{{\hat {H}}_{{\acute {\ }}B}}+\hbar {{\omega }_{l}}&0\\0&{{\hat {H}}_{{\acute {\ }}B}}-\hbar {{\omega }_{l}}\\\end{matrix}}\right)\left({\begin{matrix}{{\left|{{\Psi }_{1}}\right\rangle }_{t}}\\{{\left|{{\Psi }_{2}}\right\rangle }_{t}}\\\end{matrix}}\right)=i\hbar {\frac {\partial }{\partial t}}\left({\begin{matrix}{{\left|{{\Psi }_{1}}\right\rangle }_{t}}\\{{\left|{{\Psi }_{2}}\right\rangle }_{t}}\\\end{matrix}}\right)\\&\Leftrightarrow \left({{\hat {H}}_{{\acute {\ }}B}}+\hbar {{\omega }_{l}}\right){{\left|{{\Psi }_{1}}\right\rangle }_{t}}=i\hbar {\frac {\partial }{\partial t}}{{\left|{{\Psi }_{1}}\right\rangle }_{t}}\\&\left({{\hat {H}}_{{\acute {\ }}B}}-\hbar {{\omega }_{l}}\right){{\left|{{\Psi }_{2}}\right\rangle }_{t}}=i\hbar {\frac {\partial }{\partial t}}{{\left|{{\Psi }_{2}}\right\rangle }_{t}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (6.404 KB / 603 B) :

(H^´B+ωl00H^´Bωl)(|Ψ1t|Ψ2t)=it(|Ψ1t|Ψ2t)(H^´B+ωl)|Ψ1t=it|Ψ1t(H^´Bωl)|Ψ2t=it|Ψ2t
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>B</mi></mrow></mrow></msub><mo>+</mo><mi data-mjx-alternate="1">&#x210F;</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>B</mi></mrow></mrow></msub><mo>&#x2212;</mo><mi data-mjx-alternate="1">&#x210F;</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D4;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>B</mi></mrow></mrow></msub><mo>+</mo><mi data-mjx-alternate="1">&#x210F;</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>=</mo><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>B</mi></mrow></mrow></msub><mo>&#x2212;</mo><mi data-mjx-alternate="1">&#x210F;</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>=</mo><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Zustände mit Bahn- und Spinvariablen page

Identifiers

  • H^
  • ´
  • B
  • ωl
  • H^
  • ´
  • B
  • ωl
  • Ψ1t
  • Ψ2t
  • i
  • t
  • Ψ1t
  • Ψ2t
  • H^
  • ´
  • B
  • ωl
  • Ψ1t
  • i
  • t
  • Ψ1t
  • H^
  • ´
  • B
  • ωl
  • Ψ2t
  • i
  • t
  • Ψ2t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results