Jump to navigation Jump to search

General

Display information for equation id:math.1701.39 on revision:1701

* Page found: Zustände mit Bahn- und Spinvariablen (eq math.1701.39)

(force rerendering)

Occurrences on the following pages:

Hash: 01aee770bfe8d77621546ee7af497a81

TeX (original user input):

\begin{align}
& \hat{H}={{{\hat{H}}}_{B}}\times 1+{{H}_{S}}=\left[ \frac{1}{2{{m}_{0}}}{{\left( \bar{p}-e\bar{A} \right)}^{2}}+V(r) \right]\times 1-\frac{\left| e \right|\hbar B}{2{{m}_{0}}}{{{\hat{\bar{\sigma }}}}_{3}} \\
& \hat{H}\cong \left[ \frac{{{{\bar{p}}}^{2}}}{2{{m}_{0}}}+V(r) \right]\times 1-\frac{\left| e \right|B}{2{{m}_{0}}}\left( {{{\hat{L}}}_{3}}\times 1+\hbar {{{\hat{\bar{\sigma }}}}_{3}} \right) \\
& \frac{{{{\bar{p}}}^{2}}}{2{{m}_{0}}}+V(r)={{H}_{0}} \\
& {{H}_{0}}\left| nlm \right\rangle ={{E}_{nl}}\left| nlm \right\rangle  \\
\end{align}

TeX (checked):

{\begin{aligned}&{\hat {H}}={{\hat {H}}_{B}}\times 1+{{H}_{S}}=\left[{\frac {1}{2{{m}_{0}}}}{{\left({\bar {p}}-e{\bar {A}}\right)}^{2}}+V(r)\right]\times 1-{\frac {\left|e\right|\hbar B}{2{{m}_{0}}}}{{\hat {\bar {\sigma }}}_{3}}\\&{\hat {H}}\cong \left[{\frac {{\bar {p}}^{2}}{2{{m}_{0}}}}+V(r)\right]\times 1-{\frac {\left|e\right|B}{2{{m}_{0}}}}\left({{\hat {L}}_{3}}\times 1+\hbar {{\hat {\bar {\sigma }}}_{3}}\right)\\&{\frac {{\bar {p}}^{2}}{2{{m}_{0}}}}+V(r)={{H}_{0}}\\&{{H}_{0}}\left|nlm\right\rangle ={{E}_{nl}}\left|nlm\right\rangle \\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (5.354 KB / 656 B) :

H^=H^B×1+HS=[12m0(p¯eA¯)2+V(r)]×1|e|B2m0σ¯^3H^[p¯22m0+V(r)]×1|e|B2m0(L^3×1+σ¯^3)p¯22m0+V(r)=H0H0|nlm=Enl|nlm
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>B</mi></mrow></msub><mo>&#x00D7;</mo><mn>1</mn><mo>+</mo><msub><mi>H</mi><mrow data-mjx-texclass="ORD"><mi>S</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>V</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>&#x00D7;</mo><mn>1</mn><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>e</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mi data-mjx-alternate="1">&#x210F;</mi><mi>B</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mo>&#x2245;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo>+</mo><mi>V</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>&#x00D7;</mo><mn>1</mn><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>e</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mi>B</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo>&#x00D7;</mo><mn>1</mn><mo>+</mo><mi data-mjx-alternate="1">&#x210F;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C3;</mi><mo>¯</mo></mover></mrow></mrow><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msub><mi>m</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow></mfrac></mrow><mo>+</mo><mi>V</mi><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>H</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>H</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mi>l</mi><mi>m</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msub><mi>E</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>l</mi></mrow></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mi>l</mi><mi>m</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Zustände mit Bahn- und Spinvariablen page

Identifiers

  • H^
  • H^B
  • HS
  • m0
  • p¯
  • e
  • A¯
  • V
  • r
  • e
  • B
  • m0
  • σ¯^3
  • H^
  • p¯
  • m0
  • V
  • r
  • e
  • B
  • m0
  • L^3
  • σ¯^3
  • p¯
  • m0
  • V
  • r
  • H0
  • H0
  • n
  • l
  • m
  • Enl
  • n
  • l
  • m

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results