Jump to navigation Jump to search

General

Display information for equation id:math.1681.52 on revision:1681

* Page found: Das Wasserstoffatom (eq math.1681.52)

(force rerendering)

Occurrences on the following pages:

Hash: 8992f315f6290521daa5cdaf7fbafc45

TeX (original user input):

\frac{{{\Psi }_{nlm}}(\bar{r})}{{{Y}_{l}}^{n}\left( \vartheta ,\phi  \right)}={{\left[ \frac{\left( n-l-1 \right)!{{\left( 2k \right)}^{3}}}{2n{{\left( \left( n+l \right)! \right)}^{3}}} \right]}^{\frac{1}{2}}}{{\left( 2kr \right)}^{l}}{{e}^{-kr}}{{L}_{(n+l)}}^{2l+1}(2kr)

TeX (checked):

{\frac {{{\Psi }_{nlm}}({\bar {r}})}{{{Y}_{l}}^{n}\left(\vartheta ,\phi \right)}}={{\left[{\frac {\left(n-l-1\right)!{{\left(2k\right)}^{3}}}{2n{{\left(\left(n+l\right)!\right)}^{3}}}}\right]}^{\frac {1}{2}}}{{\left(2kr\right)}^{l}}{{e}^{-kr}}{{L}_{(n+l)}}^{2l+1}(2kr)

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (2.861 KB / 492 B) :

Ψnlm(r¯)Yln(ϑ,ϕ)=[(nl1)!(2k)32n((n+l)!)3]12(2kr)lekrL(n+l)2l+1(2kr)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>l</mi><mi>m</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><msub><mi>Y</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03D1;</mi><mo>,</mo><mi>&#x03D5;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow></mrow></mfrac></mrow><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>n</mi><mo>&#x2212;</mo><mi>l</mi><mo>&#x2212;</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>!</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>k</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>n</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>n</mi><mo>+</mo><mi>l</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>!</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow></mrow></msup><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>k</mi><mi>r</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msup><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>k</mi><mi>r</mi></mrow></mrow></msup><msup><msub><mi>L</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mi>l</mi><mo stretchy="false">)</mo></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>l</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup><mo stretchy="false">(</mo><mn>2</mn><mi>k</mi><mi>r</mi><mo stretchy="false">)</mo></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Das Wasserstoffatom page

Identifiers

  • Ψnlm
  • r¯
  • Yl
  • n
  • ϑ
  • ϕ
  • n
  • l
  • k
  • n
  • n
  • l
  • k
  • r
  • l
  • e
  • k
  • r
  • L
  • n
  • l
  • l
  • k
  • r

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results