Jump to navigation Jump to search

General

Display information for equation id:math.1677.85 on revision:1677

* Page found: Kugelsymmetrische Potentiale (eq math.1677.85)

(force rerendering)

Occurrences on the following pages:

Hash: d25cdd1fa1a1faf6cb7b97dec2dd7571

TeX (original user input):

\int_{{}}^{{}}{{{d}^{3}}r}{{\left| {{\Psi }_{nlm}} \right|}^{2}}=\int_{{}}^{{}}{d\Omega }{{\left| {{Y}_{l}}^{m}(\vartheta ,\phi ) \right|}^{2}}\int_{0}^{\infty }{{{r}^{2}}{{\left| \frac{{{u}_{nl}}(r)}{r} \right|}^{2}}=}\int_{{}}^{{}}{d\Omega }{{\left| {{Y}_{l}}^{m}(\vartheta ,\phi ) \right|}^{2}}\int_{0}^{\infty }{{{\left| {{u}_{nl}}(r) \right|}^{2}}}<\infty

TeX (checked):

\int _{}^{}{{{d}^{3}}r}{{\left|{{\Psi }_{nlm}}\right|}^{2}}=\int _{}^{}{d\Omega }{{\left|{{Y}_{l}}^{m}(\vartheta ,\phi )\right|}^{2}}\int _{0}^{\infty }{{{r}^{2}}{{\left|{\frac {{{u}_{nl}}(r)}{r}}\right|}^{2}}=}\int _{}^{}{d\Omega }{{\left|{{Y}_{l}}^{m}(\vartheta ,\phi )\right|}^{2}}\int _{0}^{\infty }{{\left|{{u}_{nl}}(r)\right|}^{2}}<\infty

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.558 KB / 472 B) :

d3r|Ψnlm|2=dΩ|Ylm(ϑ,ϕ)|20r2|unl(r)r|2=dΩ|Ylm(ϑ,ϕ)|20|unl(r)|2<
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>l</mi><mi>m</mi></mrow></mrow></msub><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi mathvariant="normal">&#x03A9;</mi></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msup><msub><mi>Y</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mo stretchy="false">(</mo><mi>&#x03D1;</mi><mo>,</mo><mi>&#x03D5;</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>l</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>r</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi mathvariant="normal">&#x03A9;</mi></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msup><msub><mi>Y</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msup><mo stretchy="false">(</mo><mi>&#x03D1;</mi><mo>,</mo><mi>&#x03D5;</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover></mstyle><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi>u</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>l</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&lt;</mo><mi mathvariant="normal">&#x221E;</mi></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Kugelsymmetrische Potentiale page

Identifiers

  • r
  • Ψnlm
  • Ω
  • Yl
  • m
  • ϑ
  • ϕ
  • r
  • unl
  • r
  • r
  • Ω
  • Yl
  • m
  • ϑ
  • ϕ
  • unl
  • r

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results