Jump to navigation Jump to search

General

Display information for equation id:math.1677.34 on revision:1677

* Page found: Kugelsymmetrische Potentiale (eq math.1677.34)

(force rerendering)

Occurrences on the following pages:

Hash: eb7985616797051e240f1b039edae357

TeX (original user input):

\begin{align}

& \left( \bar{r}\cdot \bar{p} \right)\left[ \left( \bar{r}\cdot \bar{p} \right)+\frac{\hbar }{i} \right]\Psi (r,\vartheta ,\phi )=-{{\hbar }^{2}}r\frac{\partial }{\partial r}\left( r\frac{\partial }{\partial r}+1 \right)\Psi (r,\vartheta ,\phi ) \\

& =-{{\hbar }^{2}}r\left[ \frac{\partial }{\partial r}\left( r\frac{\partial \Psi }{\partial r} \right)+\frac{\partial \Psi }{\partial r} \right]=-{{\hbar }^{2}}r\left[ \left( r\frac{{{\partial }^{2}}\Psi }{\partial {{r}^{2}}} \right)+2\frac{\partial \Psi }{\partial r} \right]=-{{\hbar }^{2}}r\frac{{{\partial }^{2}}}{\partial {{r}^{2}}}\left( r\Psi  \right) \\

\end{align}

TeX (checked):

{\begin{aligned}&\left({\bar {r}}\cdot {\bar {p}}\right)\left[\left({\bar {r}}\cdot {\bar {p}}\right)+{\frac {\hbar }{i}}\right]\Psi (r,\vartheta ,\phi )=-{{\hbar }^{2}}r{\frac {\partial }{\partial r}}\left(r{\frac {\partial }{\partial r}}+1\right)\Psi (r,\vartheta ,\phi )\\&=-{{\hbar }^{2}}r\left[{\frac {\partial }{\partial r}}\left(r{\frac {\partial \Psi }{\partial r}}\right)+{\frac {\partial \Psi }{\partial r}}\right]=-{{\hbar }^{2}}r\left[\left(r{\frac {{{\partial }^{2}}\Psi }{\partial {{r}^{2}}}}\right)+2{\frac {\partial \Psi }{\partial r}}\right]=-{{\hbar }^{2}}r{\frac {{\partial }^{2}}{\partial {{r}^{2}}}}\left(r\Psi \right)\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (5.199 KB / 577 B) :

(r¯p¯)[(r¯p¯)+i]Ψ(r,ϑ,ϕ)=2rr(rr+1)Ψ(r,ϑ,ϕ)=2r[r(rΨr)+Ψr]=2r[(r2Ψr2)+2Ψr]=2r2r2(rΨ)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><mi>r</mi><mo>,</mo><mi>&#x03D1;</mi><mo>,</mo><mi>&#x03D5;</mi><mo stretchy="false">)</mo><mo>=</mo><mo>&#x2212;</mo><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>r</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><mi>r</mi><mo>,</mo><mi>&#x03D1;</mi><mo>,</mo><mi>&#x03D5;</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mo>&#x2212;</mo><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>r</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mo>&#x2212;</mo><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>r</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mn>2</mn><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi mathvariant="normal">&#x03A8;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mo>&#x2212;</mo><msup><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>r</mi><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Kugelsymmetrische Potentiale page

Identifiers

  • r¯
  • p¯
  • r¯
  • p¯
  • i
  • Ψ
  • r
  • ϑ
  • ϕ
  • r
  • r
  • r
  • r
  • Ψ
  • r
  • ϑ
  • ϕ
  • r
  • r
  • r
  • Ψ
  • r
  • Ψ
  • r
  • r
  • r
  • Ψ
  • r
  • Ψ
  • r
  • r
  • r
  • r
  • Ψ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results