Jump to navigation
		Jump to search
		
General
Display information for equation id:math.1677.34 on revision:1677
* Page found: Kugelsymmetrische Potentiale (eq math.1677.34)
(force rerendering)Occurrences on the following pages:
Hash: eb7985616797051e240f1b039edae357
TeX (original user input):
\begin{align}
& \left( \bar{r}\cdot \bar{p} \right)\left[ \left( \bar{r}\cdot \bar{p} \right)+\frac{\hbar }{i} \right]\Psi (r,\vartheta ,\phi )=-{{\hbar }^{2}}r\frac{\partial }{\partial r}\left( r\frac{\partial }{\partial r}+1 \right)\Psi (r,\vartheta ,\phi ) \\
& =-{{\hbar }^{2}}r\left[ \frac{\partial }{\partial r}\left( r\frac{\partial \Psi }{\partial r} \right)+\frac{\partial \Psi }{\partial r} \right]=-{{\hbar }^{2}}r\left[ \left( r\frac{{{\partial }^{2}}\Psi }{\partial {{r}^{2}}} \right)+2\frac{\partial \Psi }{\partial r} \right]=-{{\hbar }^{2}}r\frac{{{\partial }^{2}}}{\partial {{r}^{2}}}\left( r\Psi  \right) \\
\end{align}
TeX (checked):
{\begin{aligned}&\left({\bar {r}}\cdot {\bar {p}}\right)\left[\left({\bar {r}}\cdot {\bar {p}}\right)+{\frac {\hbar }{i}}\right]\Psi (r,\vartheta ,\phi )=-{{\hbar }^{2}}r{\frac {\partial }{\partial r}}\left(r{\frac {\partial }{\partial r}}+1\right)\Psi (r,\vartheta ,\phi )\\&=-{{\hbar }^{2}}r\left[{\frac {\partial }{\partial r}}\left(r{\frac {\partial \Psi }{\partial r}}\right)+{\frac {\partial \Psi }{\partial r}}\right]=-{{\hbar }^{2}}r\left[\left(r{\frac {{{\partial }^{2}}\Psi }{\partial {{r}^{2}}}}\right)+2{\frac {\partial \Psi }{\partial r}}\right]=-{{\hbar }^{2}}r{\frac {{\partial }^{2}}{\partial {{r}^{2}}}}\left(r\Psi \right)\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (5.199 KB / 577 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>⋅</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">ℏ</mi></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mi mathvariant="normal">Ψ</mi><mo stretchy="false">(</mo><mi>r</mi><mo>,</mo><mi>ϑ</mi><mo>,</mo><mi>ϕ</mi><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><msup><mi data-mjx-alternate="1">ℏ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>r</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi mathvariant="normal">Ψ</mi><mo stretchy="false">(</mo><mi>r</mi><mo>,</mo><mi>ϑ</mi><mo>,</mo><mi>ϕ</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mo>−</mo><msup><mi data-mjx-alternate="1">ℏ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>r</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi mathvariant="normal">Ψ</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi mathvariant="normal">Ψ</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mo>−</mo><msup><mi data-mjx-alternate="1">ℏ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>r</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>∂</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">Ψ</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mn>2</mn><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi mathvariant="normal">Ψ</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>r</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mo>−</mo><msup><mi data-mjx-alternate="1">ℏ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>∂</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msup><mi>r</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>r</mi><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple: 
Translation to Mathematica
In Mathematica: 
Similar pages
Calculated based on the variables occurring on the entire Kugelsymmetrische Potentiale page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results