Jump to navigation Jump to search

General

Display information for equation id:math.1677.25 on revision:1677

* Page found: Kugelsymmetrische Potentiale (eq math.1677.25)

(force rerendering)

Occurrences on the following pages:

Hash: 88de47e63744b7af5be1c15b3b3c6788

TeX (original user input):

\begin{align}

& {{{\hat{L}}}^{2}}={{\varepsilon }_{jkl}}{{\varepsilon }_{jmn}}{{x}_{k}}{{p}_{l}}{{x}_{m}}{{p}_{n}} \\

& {{\varepsilon }_{jkl}}{{\varepsilon }_{jmn}}={{\delta }_{km}}{{\delta }_{\ln }}-{{\delta }_{kn}}{{\delta }_{lm}} \\

& {{{\hat{L}}}^{2}}={{\varepsilon }_{jkl}}{{\varepsilon }_{jmn}}{{x}_{k}}{{p}_{l}}{{x}_{m}}{{p}_{n}}=\left( {{\delta }_{km}}{{\delta }_{\ln }}-{{\delta }_{kn}}{{\delta }_{lm}} \right){{x}_{k}}{{p}_{l}}{{x}_{m}}{{p}_{n}} \\

\end{align}

TeX (checked):

{\begin{aligned}&{{\hat {L}}^{2}}={{\varepsilon }_{jkl}}{{\varepsilon }_{jmn}}{{x}_{k}}{{p}_{l}}{{x}_{m}}{{p}_{n}}\\&{{\varepsilon }_{jkl}}{{\varepsilon }_{jmn}}={{\delta }_{km}}{{\delta }_{\ln }}-{{\delta }_{kn}}{{\delta }_{lm}}\\&{{\hat {L}}^{2}}={{\varepsilon }_{jkl}}{{\varepsilon }_{jmn}}{{x}_{k}}{{p}_{l}}{{x}_{m}}{{p}_{n}}=\left({{\delta }_{km}}{{\delta }_{\ln }}-{{\delta }_{kn}}{{\delta }_{lm}}\right){{x}_{k}}{{p}_{l}}{{x}_{m}}{{p}_{n}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.505 KB / 438 B) :

L^2=εjklεjmnxkplxmpnεjklεjmn=δkmδlnδknδlmL^2=εjklεjmnxkplxmpn=(δkmδlnδknδlm)xkplxmpn
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>k</mi><mi>l</mi></mrow></mrow></msub><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>m</mi><mi>n</mi></mrow></mrow></msub><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>k</mi><mi>l</mi></mrow></mrow></msub><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>m</mi><mi>n</mi></mrow></mrow></msub><mo>=</mo><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>m</mi></mrow></mrow></msub><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mi>ln</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>n</mi></mrow></mrow></msub><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>m</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>k</mi><mi>l</mi></mrow></mrow></msub><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>m</mi><mi>n</mi></mrow></mrow></msub><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>m</mi></mrow></mrow></msub><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mi>ln</mi></mrow></msub><mo>&#x2212;</mo><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>k</mi><mi>n</mi></mrow></mrow></msub><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>m</mi></mrow></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></msub><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Kugelsymmetrische Potentiale page

Identifiers

  • L^
  • εjkl
  • εjmn
  • xk
  • pl
  • xm
  • pn
  • εjkl
  • εjmn
  • δkm
  • δ
  • δkn
  • δlm
  • L^
  • εjkl
  • εjmn
  • xk
  • pl
  • xm
  • pn
  • δkm
  • δ
  • δkn
  • δlm
  • xk
  • pl
  • xm
  • pn

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results