Jump to navigation Jump to search

General

Display information for equation id:math.1670.13 on revision:1670

* Page found: Ortsdarstellung des Bahndrehimpulses (eq math.1670.13)

(force rerendering)

Occurrences on the following pages:

Hash: aacd57de9a148c038ead707c39c2c582

TeX (original user input):

\begin{align}

& \left\langle  {\bar{r}} \right|{{{\hat{L}}}_{\pm }}\left| l,m \right\rangle =\frac{\hbar }{i}\left( {{{\hat{x}}}_{2}}{{\partial }_{3}}-{{{\hat{x}}}_{3}}{{\partial }_{2}}\pm i{{{\hat{x}}}_{3}}{{\partial }_{1}}\mp i{{{\hat{x}}}_{1}}{{\partial }_{3}} \right){{\Psi }_{lm}}(\bar{r})=\hbar {{e}^{\pm i\phi }}\left( \pm \frac{\partial }{\partial \vartheta }+i\cot \vartheta \frac{\partial }{\partial \phi } \right){{\Psi }_{lm}}(r,\vartheta ,\phi ) \\

& \hbar {{e}^{\pm i\phi }}\left( \pm \frac{\partial }{\partial \vartheta }+i\cot \vartheta \frac{\partial }{\partial \phi } \right){{\Psi }_{lm}}(r,\vartheta ,\phi )=\hbar {{e}^{i\left( m\pm 1 \right)\phi }}\left( \pm \frac{\partial }{\partial \vartheta }-m\cot \vartheta  \right){{f}_{lm}}(r,\vartheta ) \\

\end{align}

TeX (checked):

{\begin{aligned}&\left\langle {\bar {r}}\right|{{\hat {L}}_{\pm }}\left|l,m\right\rangle ={\frac {\hbar }{i}}\left({{\hat {x}}_{2}}{{\partial }_{3}}-{{\hat {x}}_{3}}{{\partial }_{2}}\pm i{{\hat {x}}_{3}}{{\partial }_{1}}\mp i{{\hat {x}}_{1}}{{\partial }_{3}}\right){{\Psi }_{lm}}({\bar {r}})=\hbar {{e}^{\pm i\phi }}\left(\pm {\frac {\partial }{\partial \vartheta }}+i\cot \vartheta {\frac {\partial }{\partial \phi }}\right){{\Psi }_{lm}}(r,\vartheta ,\phi )\\&\hbar {{e}^{\pm i\phi }}\left(\pm {\frac {\partial }{\partial \vartheta }}+i\cot \vartheta {\frac {\partial }{\partial \phi }}\right){{\Psi }_{lm}}(r,\vartheta ,\phi )=\hbar {{e}^{i\left(m\pm 1\right)\phi }}\left(\pm {\frac {\partial }{\partial \vartheta }}-m\cot \vartheta \right){{f}_{lm}}(r,\vartheta )\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (5.647 KB / 672 B) :

r¯|L^±|l,m=i(x^23x^32±ix^31ix^13)Ψlm(r¯)=e±iϕ(±ϑ+icotϑϕ)Ψlm(r,ϑ,ϕ)e±iϕ(±ϑ+icotϑϕ)Ψlm(r,ϑ,ϕ)=ei(m±1)ϕ(±ϑmcotϑ)flm(r,ϑ)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>l</mi><mo>,</mo><mi>m</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo>&#x2212;</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>&#x00B1;</mo><mi>i</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>&#x2213;</mo><mi>i</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mi>&#x2202;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>m</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><mi data-mjx-alternate="1">&#x210F;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo><mi>i</mi><mi>&#x03D5;</mi></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x00B1;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D1;</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mi>i</mi><mi>cot</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D5;</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>m</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo>,</mo><mi>&#x03D1;</mi><mo>,</mo><mi>&#x03D5;</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi data-mjx-alternate="1">&#x210F;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo><mi>i</mi><mi>&#x03D5;</mi></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x00B1;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D1;</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mi>i</mi><mi>cot</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D5;</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>m</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo>,</mo><mi>&#x03D1;</mi><mo>,</mo><mi>&#x03D5;</mi><mo stretchy="false">)</mo><mo>=</mo><mi data-mjx-alternate="1">&#x210F;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>m</mi><mo>&#x00B1;</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03D5;</mi></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>&#x00B1;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>&#x03D1;</mi></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mi>m</mi><mi>cot</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>m</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo>,</mo><mi>&#x03D1;</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Ortsdarstellung des Bahndrehimpulses page

Identifiers

  • r¯
  • L^
  • l
  • m
  • i
  • x^2
  • x^3
  • i
  • x^3
  • i
  • x^1
  • Ψlm
  • r¯
  • e
  • i
  • ϕ
  • ϑ
  • i
  • ϑ
  • ϕ
  • Ψlm
  • r
  • ϑ
  • ϕ
  • e
  • i
  • ϕ
  • ϑ
  • i
  • ϑ
  • ϕ
  • Ψlm
  • r
  • ϑ
  • ϕ
  • e
  • i
  • m
  • ϕ
  • ϑ
  • m
  • ϑ
  • flm
  • r
  • ϑ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results