Jump to navigation
Jump to search
General
Display information for equation id:math.1668.13 on revision:1668
* Page found: Ortsdarstellung des Bahndrehimpulses (eq math.1668.13)
(force rerendering)Occurrences on the following pages:
Hash: aacd57de9a148c038ead707c39c2c582
TeX (original user input):
\begin{align}
& \left\langle {\bar{r}} \right|{{{\hat{L}}}_{\pm }}\left| l,m \right\rangle =\frac{\hbar }{i}\left( {{{\hat{x}}}_{2}}{{\partial }_{3}}-{{{\hat{x}}}_{3}}{{\partial }_{2}}\pm i{{{\hat{x}}}_{3}}{{\partial }_{1}}\mp i{{{\hat{x}}}_{1}}{{\partial }_{3}} \right){{\Psi }_{lm}}(\bar{r})=\hbar {{e}^{\pm i\phi }}\left( \pm \frac{\partial }{\partial \vartheta }+i\cot \vartheta \frac{\partial }{\partial \phi } \right){{\Psi }_{lm}}(r,\vartheta ,\phi ) \\
& \hbar {{e}^{\pm i\phi }}\left( \pm \frac{\partial }{\partial \vartheta }+i\cot \vartheta \frac{\partial }{\partial \phi } \right){{\Psi }_{lm}}(r,\vartheta ,\phi )=\hbar {{e}^{i\left( m\pm 1 \right)\phi }}\left( \pm \frac{\partial }{\partial \vartheta }-m\cot \vartheta \right){{f}_{lm}}(r,\vartheta ) \\
\end{align}
TeX (checked):
{\begin{aligned}&\left\langle {\bar {r}}\right|{{\hat {L}}_{\pm }}\left|l,m\right\rangle ={\frac {\hbar }{i}}\left({{\hat {x}}_{2}}{{\partial }_{3}}-{{\hat {x}}_{3}}{{\partial }_{2}}\pm i{{\hat {x}}_{3}}{{\partial }_{1}}\mp i{{\hat {x}}_{1}}{{\partial }_{3}}\right){{\Psi }_{lm}}({\bar {r}})=\hbar {{e}^{\pm i\phi }}\left(\pm {\frac {\partial }{\partial \vartheta }}+i\cot \vartheta {\frac {\partial }{\partial \phi }}\right){{\Psi }_{lm}}(r,\vartheta ,\phi )\\&\hbar {{e}^{\pm i\phi }}\left(\pm {\frac {\partial }{\partial \vartheta }}+i\cot \vartheta {\frac {\partial }{\partial \phi }}\right){{\Psi }_{lm}}(r,\vartheta ,\phi )=\hbar {{e}^{i\left(m\pm 1\right)\phi }}\left(\pm {\frac {\partial }{\partial \vartheta }}-m\cot \vartheta \right){{f}_{lm}}(r,\vartheta )\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (5.647 KB / 672 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>±</mo></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>l</mi><mo>,</mo><mi>m</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">ℏ</mi></mrow><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mi>∂</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo>−</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msub><mi>∂</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>±</mo><mi>i</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msub><mi>∂</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>∓</mo><mi>i</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mi>∂</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>m</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><mi data-mjx-alternate="1">ℏ</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>±</mo><mi>i</mi><mi>ϕ</mi></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>±</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>ϑ</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mi>i</mi><mi>cot</mi><mo>⁡</mo><mi>ϑ</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>ϕ</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>m</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo>,</mo><mi>ϑ</mi><mo>,</mo><mi>ϕ</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi data-mjx-alternate="1">ℏ</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>±</mo><mi>i</mi><mi>ϕ</mi></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>±</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>ϑ</mi></mrow></mrow></mfrac></mrow><mo>+</mo><mi>i</mi><mi>cot</mi><mo>⁡</mo><mi>ϑ</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>ϕ</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>m</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo>,</mo><mi>ϑ</mi><mo>,</mo><mi>ϕ</mi><mo stretchy="false">)</mo><mo>=</mo><mi data-mjx-alternate="1">ℏ</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>m</mi><mo>±</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>ϕ</mi></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mo>±</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>ϑ</mi></mrow></mrow></mfrac></mrow><mo>−</mo><mi>m</mi><mi>cot</mi><mo>⁡</mo><mi>ϑ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><msub><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>l</mi><mi>m</mi></mrow></mrow></msub><mo stretchy="false">(</mo><mi>r</mi><mo>,</mo><mi>ϑ</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Ortsdarstellung des Bahndrehimpulses page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results