Jump to navigation Jump to search

General

Display information for equation id:math.1667.3 on revision:1667

* Page found: Drehimpuls- Eigenzustände (eq math.1667.3)

(force rerendering)

Occurrences on the following pages:

Hash: 982676d82fed2f85766cbb18947761eb

TeX (original user input):

{{\hat{L}}_{j}}^{+}={{\varepsilon }_{jkl}}{{\left( {{{\hat{r}}}_{k}}{{{\hat{p}}}_{l}} \right)}^{+}}={{\varepsilon }_{jkl}}{{\hat{p}}_{l}}^{+}{{\hat{r}}_{k}}^{+}={{\varepsilon }_{jkl}}{{\hat{p}}_{l}}{{\hat{r}}_{k}}={{\varepsilon }_{jkl}}{{\hat{r}}_{k}}{{\hat{p}}_{l}}

TeX (checked):

{{\hat {L}}_{j}}^{+}={{\varepsilon }_{jkl}}{{\left({{\hat {r}}_{k}}{{\hat {p}}_{l}}\right)}^{+}}={{\varepsilon }_{jkl}}{{\hat {p}}_{l}}^{+}{{\hat {r}}_{k}}^{+}={{\varepsilon }_{jkl}}{{\hat {p}}_{l}}{{\hat {r}}_{k}}={{\varepsilon }_{jkl}}{{\hat {r}}_{k}}{{\hat {p}}_{l}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (2.557 KB / 323 B) :

L^j+=εjkl(r^kp^l)+=εjklp^l+r^k+=εjklp^lr^k=εjklr^kp^l
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>j</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo>=</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>k</mi><mi>l</mi></mrow></mrow></msub><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo>=</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>k</mi><mi>l</mi></mrow></mrow></msub><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo>=</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>k</mi><mi>l</mi></mrow></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><mo>=</mo><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>j</mi><mi>k</mi><mi>l</mi></mrow></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>k</mi></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>l</mi></mrow></msub></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Drehimpuls- Eigenzustände page

Identifiers

  • L^j
  • εjkl
  • r^k
  • p^l
  • εjkl
  • p^l
  • r^k
  • εjkl
  • p^l
  • r^k
  • εjkl
  • r^k
  • p^l

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results