Jump to navigation Jump to search

General

Display information for equation id:math.1665.48 on revision:1665

* Page found: Drehimpuls- Eigenzustände (eq math.1665.48)

(force rerendering)

Occurrences on the following pages:

Hash: 83ab29054be577642938fb3875e8764e

TeX (original user input):

\begin{align}

& {{{\hat{L}}}^{2}}{{{\hat{L}}}_{\pm }}\left| a,b \right\rangle ={{{\hat{L}}}_{\pm }}{{{\hat{L}}}^{2}}\left| a,b \right\rangle =a{{{\hat{L}}}_{\pm }}\left| a,b \right\rangle  \\

& {{{\hat{L}}}_{3}}{{{\hat{L}}}_{\pm }}\left| a,b \right\rangle =\left( {{{\hat{L}}}_{\pm }}{{{\hat{L}}}_{3}}-\left[ {{{\hat{L}}}_{\pm }},{{{\hat{L}}}_{3}} \right] \right)\left| a,b \right\rangle  \\

& \left[ {{{\hat{L}}}_{\pm }},{{{\hat{L}}}_{3}} \right]=\mp \hbar {{{\hat{L}}}_{\pm }} \\

& \to \left( {{{\hat{L}}}_{\pm }}{{{\hat{L}}}_{3}}-\left[ {{{\hat{L}}}_{\pm }},{{{\hat{L}}}_{3}} \right] \right)\left| a,b \right\rangle ={{{\hat{L}}}_{\pm }}\left( {{{\hat{L}}}_{3}}\pm \hbar  \right)\left| a,b \right\rangle ={{{\hat{L}}}_{\pm }}\left( b\pm \hbar  \right)\left| a,b \right\rangle  \\

\end{align}

TeX (checked):

{\begin{aligned}&{{\hat {L}}^{2}}{{\hat {L}}_{\pm }}\left|a,b\right\rangle ={{\hat {L}}_{\pm }}{{\hat {L}}^{2}}\left|a,b\right\rangle =a{{\hat {L}}_{\pm }}\left|a,b\right\rangle \\&{{\hat {L}}_{3}}{{\hat {L}}_{\pm }}\left|a,b\right\rangle =\left({{\hat {L}}_{\pm }}{{\hat {L}}_{3}}-\left[{{\hat {L}}_{\pm }},{{\hat {L}}_{3}}\right]\right)\left|a,b\right\rangle \\&\left[{{\hat {L}}_{\pm }},{{\hat {L}}_{3}}\right]=\mp \hbar {{\hat {L}}_{\pm }}\\&\to \left({{\hat {L}}_{\pm }}{{\hat {L}}_{3}}-\left[{{\hat {L}}_{\pm }},{{\hat {L}}_{3}}\right]\right)\left|a,b\right\rangle ={{\hat {L}}_{\pm }}\left({{\hat {L}}_{3}}\pm \hbar \right)\left|a,b\right\rangle ={{\hat {L}}_{\pm }}\left(b\pm \hbar \right)\left|a,b\right\rangle \\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (6.33 KB / 518 B) :

L^2L^±|a,b=L^±L^2|a,b=aL^±|a,bL^3L^±|a,b=(L^±L^3[L^±,L^3])|a,b[L^±,L^3]=L^±(L^±L^3[L^±,L^3])|a,b=L^±(L^3±)|a,b=L^±(b±)|a,b
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo></mrow></msub><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mi>a</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mo>&#x2213;</mo><mi data-mjx-alternate="1">&#x210F;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mo accent="false">&#x2192;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo></mrow></msub><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo></mrow></msub><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo>&#x00B1;</mo><mi data-mjx-alternate="1">&#x210F;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x00B1;</mo></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>b</mi><mo>&#x00B1;</mo><mi data-mjx-alternate="1">&#x210F;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Drehimpuls- Eigenzustände page

Identifiers

  • L^
  • L^
  • a
  • b
  • L^
  • L^
  • a
  • b
  • a
  • L^
  • a
  • b
  • L^3
  • L^
  • a
  • b
  • L^
  • L^3
  • L^
  • L^3
  • a
  • b
  • L^
  • L^3
  • L^
  • L^
  • L^3
  • L^
  • L^3
  • a
  • b
  • L^
  • L^3
  • a
  • b
  • L^
  • b
  • a
  • b

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results