Jump to navigation Jump to search

General

Display information for equation id:math.1664.18 on revision:1664

* Page found: Drehimpuls- Eigenzustände (eq math.1664.18)

(force rerendering)

Occurrences on the following pages:

Hash: bf8e96df620769050494b44166b1771f

TeX (original user input):

\begin{align}

& \left[ {{\left( {{{\hat{L}}}_{+}} \right)}^{n}},{{{\hat{L}}}_{3}} \right]=-n\hbar {{\left( {{{\hat{L}}}_{+}} \right)}^{n}} \\

& \left[ {{\left( {{{\hat{L}}}_{-}} \right)}^{n}},{{{\hat{L}}}_{3}} \right]=n\hbar {{\left( {{{\hat{L}}}_{-}} \right)}^{n}} \\

\end{align}

TeX (checked):

{\begin{aligned}&\left[{{\left({{\hat {L}}_{+}}\right)}^{n}},{{\hat {L}}_{3}}\right]=-n\hbar {{\left({{\hat {L}}_{+}}\right)}^{n}}\\&\left[{{\left({{\hat {L}}_{-}}\right)}^{n}},{{\hat {L}}_{3}}\right]=n\hbar {{\left({{\hat {L}}_{-}}\right)}^{n}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (2.515 KB / 393 B) :

[(L^+)n,L^3]=n(L^+)n[(L^)n,L^3]=n(L^)n
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mi>n</mi><mi data-mjx-alternate="1">&#x210F;</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo>,</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>=</mo><mi>n</mi><mi data-mjx-alternate="1">&#x210F;</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>L</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Drehimpuls- Eigenzustände page

Identifiers

  • L^+
  • n
  • L^3
  • n
  • L^+
  • n
  • L^
  • n
  • L^3
  • n
  • L^
  • n

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results