Jump to navigation Jump to search

General

Display information for equation id:math.1655.61 on revision:1655

* Page found: Der harmonische Oszillator (eq math.1655.61)

(force rerendering)

Occurrences on the following pages:

Hash: 1eb1f37f28998f9b864478ddd712b9c6

TeX (original user input):

\begin{align}
& a\left| n \right\rangle =\frac{1}{\sqrt{n!}}a{{\left( {{a}^{+}} \right)}^{n}}\left| 0 \right\rangle =\frac{1}{\sqrt{n!}}\left\{ {{\left( {{a}^{+}} \right)}^{n}}a+\left[ a,{{\left( {{a}^{+}} \right)}^{n}} \right] \right\}\left| 0 \right\rangle =\frac{1}{\sqrt{n!}}n{{\left( {{a}^{+}} \right)}^{n-1}}\left| 0 \right\rangle =\sqrt{n}\left| n-1 \right\rangle  \\
& {{a}^{+}}\left| n \right\rangle =\frac{1}{\sqrt{n!}}{{\left( {{a}^{+}} \right)}^{n+1}}\left| 0 \right\rangle =\sqrt{n+1}\left| n+1 \right\rangle  \\
\end{align}

TeX (checked):

{\begin{aligned}&a\left|n\right\rangle ={\frac {1}{\sqrt {n!}}}a{{\left({{a}^{+}}\right)}^{n}}\left|0\right\rangle ={\frac {1}{\sqrt {n!}}}\left\{{{\left({{a}^{+}}\right)}^{n}}a+\left[a,{{\left({{a}^{+}}\right)}^{n}}\right]\right\}\left|0\right\rangle ={\frac {1}{\sqrt {n!}}}n{{\left({{a}^{+}}\right)}^{n-1}}\left|0\right\rangle ={\sqrt {n}}\left|n-1\right\rangle \\&{{a}^{+}}\left|n\right\rangle ={\frac {1}{\sqrt {n!}}}{{\left({{a}^{+}}\right)}^{n+1}}\left|0\right\rangle ={\sqrt {n+1}}\left|n+1\right\rangle \\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (4.351 KB / 486 B) :

a|n=1n!a(a+)n|0=1n!{(a+)na+[a,(a+)n]}|0=1n!n(a+)n1|0=n|n1a+|n=1n!(a+)n+1|0=n+1|n+1
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>a</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>!</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><mi>a</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>!</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mi>a</mi><mo>+</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>a</mi><mo>,</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mi>n</mi></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">}</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>!</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><mi>n</mi><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><msqrt><mi>n</mi></msqrt></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo>&#x2212;</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>!</mi></mrow></msqrt></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>a</mi><mrow data-mjx-texclass="ORD"><mo>+</mo></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mn>0</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msqrt></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Der harmonische Oszillator page

Identifiers

  • a
  • n
  • n
  • a
  • a
  • n
  • n
  • a
  • n
  • a
  • a
  • a
  • n
  • n
  • n
  • a
  • n
  • n
  • n
  • a
  • n
  • n
  • a
  • n
  • n
  • n

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results