Jump to navigation
Jump to search
General
Display information for equation id:math.1636.61 on revision:1636
* Page found: Die Quantisierung (eq math.1636.61)
(force rerendering)Occurrences on the following pages:
Hash: d204c8cd5b69744e8c36763b92a1b708
TeX (original user input):
\begin{align}
& f({{\lambda }_{0}})=\alpha +\frac{{{\beta }^{2}}}{2\gamma }-\frac{{{\beta }^{2}}}{4\gamma }=\alpha +\frac{{{\beta }^{2}}}{4\gamma }\ge 0 \\
& {{\beta }^{2}}={{\left\langle \left[ \Delta \hat{F},\Delta \hat{G} \right] \right\rangle }^{2}}={{\left\langle \left[ \hat{F},\hat{G} \right] \right\rangle }^{2}}=-\left\langle \left[ \hat{G},\hat{F} \right] \right\rangle \left\langle \left[ \hat{F},\hat{G} \right] \right\rangle =-\left\langle \left[ \hat{F},\hat{G} \right] \right\rangle *\left\langle \left[ \hat{F},\hat{G} \right] \right\rangle =-{{\left| \left\langle \left[ \hat{F},\hat{G} \right] \right\rangle \right|}^{2}} \\
& \Rightarrow \left\langle {{\left( \Delta \hat{F} \right)}^{2}} \right\rangle \left\langle {{\left( \Delta \hat{G} \right)}^{2}} \right\rangle \ge \frac{1}{4}{{\left| \left\langle \left[ \hat{F},\hat{G} \right] \right\rangle \right|}^{2}} \\
\end{align}
TeX (checked):
{\begin{aligned}&f({{\lambda }_{0}})=\alpha +{\frac {{\beta }^{2}}{2\gamma }}-{\frac {{\beta }^{2}}{4\gamma }}=\alpha +{\frac {{\beta }^{2}}{4\gamma }}\geq 0\\&{{\beta }^{2}}={{\left\langle \left[\Delta {\hat {F}},\Delta {\hat {G}}\right]\right\rangle }^{2}}={{\left\langle \left[{\hat {F}},{\hat {G}}\right]\right\rangle }^{2}}=-\left\langle \left[{\hat {G}},{\hat {F}}\right]\right\rangle \left\langle \left[{\hat {F}},{\hat {G}}\right]\right\rangle =-\left\langle \left[{\hat {F}},{\hat {G}}\right]\right\rangle *\left\langle \left[{\hat {F}},{\hat {G}}\right]\right\rangle =-{{\left|\left\langle \left[{\hat {F}},{\hat {G}}\right]\right\rangle \right|}^{2}}\\&\Rightarrow \left\langle {{\left(\Delta {\hat {F}}\right)}^{2}}\right\rangle \left\langle {{\left(\Delta {\hat {G}}\right)}^{2}}\right\rangle \geq {\frac {1}{4}}{{\left|\left\langle \left[{\hat {F}},{\hat {G}}\right]\right\rangle \right|}^{2}}\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (6.899 KB / 605 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>f</mi><mo stretchy="false">(</mo><msub><mi>λ</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo>=</mo><mi>α</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>β</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>γ</mi></mrow></mrow></mfrac></mrow><mo>−</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>β</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>γ</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mi>α</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>β</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>γ</mi></mrow></mrow></mfrac></mrow><mo>≥</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>β</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi mathvariant="normal">Δ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mi mathvariant="normal">Δ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mo>−</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><mo>−</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>*</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><mo>−</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">Δ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">Δ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>≥</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Die Quantisierung page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results