Jump to navigation Jump to search

General

Display information for equation id:math.1636.61 on revision:1636

* Page found: Die Quantisierung (eq math.1636.61)

(force rerendering)

Occurrences on the following pages:

Hash: d204c8cd5b69744e8c36763b92a1b708

TeX (original user input):

\begin{align}
& f({{\lambda }_{0}})=\alpha +\frac{{{\beta }^{2}}}{2\gamma }-\frac{{{\beta }^{2}}}{4\gamma }=\alpha +\frac{{{\beta }^{2}}}{4\gamma }\ge 0 \\
& {{\beta }^{2}}={{\left\langle \left[ \Delta \hat{F},\Delta \hat{G} \right] \right\rangle }^{2}}={{\left\langle \left[ \hat{F},\hat{G} \right] \right\rangle }^{2}}=-\left\langle \left[ \hat{G},\hat{F} \right] \right\rangle \left\langle \left[ \hat{F},\hat{G} \right] \right\rangle =-\left\langle \left[ \hat{F},\hat{G} \right] \right\rangle *\left\langle \left[ \hat{F},\hat{G} \right] \right\rangle =-{{\left| \left\langle \left[ \hat{F},\hat{G} \right] \right\rangle  \right|}^{2}} \\
& \Rightarrow \left\langle {{\left( \Delta \hat{F} \right)}^{2}} \right\rangle \left\langle {{\left( \Delta \hat{G} \right)}^{2}} \right\rangle \ge \frac{1}{4}{{\left| \left\langle \left[ \hat{F},\hat{G} \right] \right\rangle  \right|}^{2}} \\
\end{align}

TeX (checked):

{\begin{aligned}&f({{\lambda }_{0}})=\alpha +{\frac {{\beta }^{2}}{2\gamma }}-{\frac {{\beta }^{2}}{4\gamma }}=\alpha +{\frac {{\beta }^{2}}{4\gamma }}\geq 0\\&{{\beta }^{2}}={{\left\langle \left[\Delta {\hat {F}},\Delta {\hat {G}}\right]\right\rangle }^{2}}={{\left\langle \left[{\hat {F}},{\hat {G}}\right]\right\rangle }^{2}}=-\left\langle \left[{\hat {G}},{\hat {F}}\right]\right\rangle \left\langle \left[{\hat {F}},{\hat {G}}\right]\right\rangle =-\left\langle \left[{\hat {F}},{\hat {G}}\right]\right\rangle *\left\langle \left[{\hat {F}},{\hat {G}}\right]\right\rangle =-{{\left|\left\langle \left[{\hat {F}},{\hat {G}}\right]\right\rangle \right|}^{2}}\\&\Rightarrow \left\langle {{\left(\Delta {\hat {F}}\right)}^{2}}\right\rangle \left\langle {{\left(\Delta {\hat {G}}\right)}^{2}}\right\rangle \geq {\frac {1}{4}}{{\left|\left\langle \left[{\hat {F}},{\hat {G}}\right]\right\rangle \right|}^{2}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (6.899 KB / 605 B) :

f(λ0)=α+β22γβ24γ=α+β24γ0β2=[ΔF^,ΔG^]2=[F^,G^]2=[G^,F^][F^,G^]=[F^,G^]*[F^,G^]=|[F^,G^]|2(ΔF^)2(ΔG^)214|[F^,G^]|2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>f</mi><mo stretchy="false">(</mo><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo>=</mo><mi>&#x03B1;</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03B3;</mi></mrow></mrow></mfrac></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03B3;</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mi>&#x03B1;</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03B3;</mi></mrow></mrow></mfrac></mrow><mo>&#x2265;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><msup><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>*</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mo>&#x2212;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>&#x2265;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mn>4</mn></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Die Quantisierung page

Identifiers

  • f
  • λ0
  • α
  • β
  • γ
  • β
  • γ
  • α
  • β
  • γ
  • β
  • Δ
  • F^
  • Δ
  • G^
  • F^
  • G^
  • G^
  • F^
  • F^
  • G^
  • F^
  • G^
  • F^
  • G^
  • F^
  • G^
  • Δ
  • F^
  • Δ
  • G^
  • F^
  • G^

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results