Jump to navigation Jump to search

General

Display information for equation id:math.1636.51 on revision:1636

* Page found: Die Quantisierung (eq math.1636.51)

(force rerendering)

Occurrences on the following pages:

Hash: 9fcaaaf17b8fdfa6eaa354f0afd24ce2

TeX (original user input):

\begin{align}
& f(\lambda ):=\left\langle \left( \Delta \hat{F}+i\lambda \Delta \hat{G} \right)\left( \Delta \hat{F}-i\lambda \Delta \hat{G} \right) \right\rangle  \\
& =\left\langle {{\left( \Delta \hat{F} \right)}^{2}} \right\rangle -i\lambda \left\langle \left[ \Delta \hat{F},\Delta \hat{G} \right] \right\rangle +{{\lambda }^{2}}\left\langle {{\left( \Delta \hat{G} \right)}^{2}} \right\rangle  \\
& \left\langle {{\left( \Delta \hat{F} \right)}^{2}} \right\rangle :=\alpha \ge 0 \\
& \left\langle \left[ \Delta \hat{F},\Delta \hat{G} \right] \right\rangle :=\beta  \\
& \left\langle {{\left( \Delta \hat{G} \right)}^{2}} \right\rangle :=\gamma \ge 0 \\
\end{align}

TeX (checked):

{\begin{aligned}&f(\lambda ):=\left\langle \left(\Delta {\hat {F}}+i\lambda \Delta {\hat {G}}\right)\left(\Delta {\hat {F}}-i\lambda \Delta {\hat {G}}\right)\right\rangle \\&=\left\langle {{\left(\Delta {\hat {F}}\right)}^{2}}\right\rangle -i\lambda \left\langle \left[\Delta {\hat {F}},\Delta {\hat {G}}\right]\right\rangle +{{\lambda }^{2}}\left\langle {{\left(\Delta {\hat {G}}\right)}^{2}}\right\rangle \\&\left\langle {{\left(\Delta {\hat {F}}\right)}^{2}}\right\rangle :=\alpha \geq 0\\&\left\langle \left[\Delta {\hat {F}},\Delta {\hat {G}}\right]\right\rangle :=\beta \\&\left\langle {{\left(\Delta {\hat {G}}\right)}^{2}}\right\rangle :=\gamma \geq 0\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (4.735 KB / 521 B) :

f(λ):=(ΔF^+iλΔG^)(ΔF^iλΔG^)=(ΔF^)2iλ[ΔF^,ΔG^]+λ2(ΔG^)2(ΔF^)2:=α0[ΔF^,ΔG^]:=β(ΔG^)2:=γ0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>f</mi><mo stretchy="false">(</mo><mi>&#x03BB;</mi><mo stretchy="false">)</mo><mi>:</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>+</mo><mi>i</mi><mi>&#x03BB;</mi><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi>i</mi><mi>&#x03BB;</mi><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>&#x2212;</mo><mi>i</mi><mi>&#x03BB;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>+</mo><msup><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mi>:</mi><mo>=</mo><mi>&#x03B1;</mi><mo>&#x2265;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mo>,</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mi>:</mi><mo>=</mo><mi>&#x03B2;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x0394;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mi>:</mi><mo>=</mo><mi>&#x03B3;</mi><mo>&#x2265;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Die Quantisierung page

Identifiers

  • f
  • λ
  • Δ
  • F^
  • i
  • λ
  • Δ
  • G^
  • Δ
  • F^
  • i
  • λ
  • Δ
  • G^
  • Δ
  • F^
  • i
  • λ
  • Δ
  • F^
  • Δ
  • G^
  • λ
  • Δ
  • G^
  • Δ
  • F^
  • α
  • Δ
  • F^
  • Δ
  • G^
  • β
  • Δ
  • G^
  • γ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results