Jump to navigation
Jump to search
General
Display information for equation id:math.1632.50 on revision:1632
* Page found: Eigenwerte und Eigenzustände von hermiteschen Operatoren (eq math.1632.50)
(force rerendering)Occurrences on the following pages:
Hash: a94992263b38bf42c9ff1e3a1cbf6cba
TeX (original user input):
\begin{align}
& {{c}_{\beta \acute{\ }\beta }}=\left\langle n,\beta \acute{\ } \right|\hat{G}\left| n,\beta \right\rangle ={{G}_{n\beta }}{{\delta }_{\beta \acute{\ }\beta }} \\
& \hat{G}\left| n,\beta \right\rangle =\sum\limits_{\beta \acute{\ }}{\left| n,\beta \acute{\ } \right\rangle }{{c}_{\beta \acute{\ }\beta }}={{G}_{n\beta }}\left| n,\beta \right\rangle \\
\end{align}
TeX (checked):
{\begin{aligned}&{{c}_{\beta {\acute {\ }}\beta }}=\left\langle n,\beta {\acute {\ }}\right|{\hat {G}}\left|n,\beta \right\rangle ={{G}_{n\beta }}{{\delta }_{\beta {\acute {\ }}\beta }}\\&{\hat {G}}\left|n,\beta \right\rangle =\sum \limits _{\beta {\acute {\ }}}{\left|n,\beta {\acute {\ }}\right\rangle }{{c}_{\beta {\acute {\ }}\beta }}={{G}_{n\beta }}\left|n,\beta \right\rangle \\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (3.155 KB / 477 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>β</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>β</mi></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi>n</mi><mo>,</mo><mi>β</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo>,</mo><mi>β</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>β</mi></mrow></mrow></msub><msub><mi>δ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>β</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>β</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo>,</mo><mi>β</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><munder><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>β</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo>,</mo><mi>β</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>β</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>β</mi></mrow></mrow></msub><mo>=</mo><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>β</mi></mrow></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo>,</mo><mi>β</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Eigenwerte und Eigenzustände von hermiteschen Operatoren page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results