Jump to navigation Jump to search

General

Display information for equation id:math.1632.50 on revision:1632

* Page found: Eigenwerte und Eigenzustände von hermiteschen Operatoren (eq math.1632.50)

(force rerendering)

Occurrences on the following pages:

Hash: a94992263b38bf42c9ff1e3a1cbf6cba

TeX (original user input):

\begin{align}
& {{c}_{\beta \acute{\ }\beta }}=\left\langle  n,\beta \acute{\ } \right|\hat{G}\left| n,\beta  \right\rangle ={{G}_{n\beta }}{{\delta }_{\beta \acute{\ }\beta }} \\
& \hat{G}\left| n,\beta  \right\rangle =\sum\limits_{\beta \acute{\ }}{\left| n,\beta \acute{\ } \right\rangle }{{c}_{\beta \acute{\ }\beta }}={{G}_{n\beta }}\left| n,\beta  \right\rangle  \\
\end{align}

TeX (checked):

{\begin{aligned}&{{c}_{\beta {\acute {\ }}\beta }}=\left\langle n,\beta {\acute {\ }}\right|{\hat {G}}\left|n,\beta \right\rangle ={{G}_{n\beta }}{{\delta }_{\beta {\acute {\ }}\beta }}\\&{\hat {G}}\left|n,\beta \right\rangle =\sum \limits _{\beta {\acute {\ }}}{\left|n,\beta {\acute {\ }}\right\rangle }{{c}_{\beta {\acute {\ }}\beta }}={{G}_{n\beta }}\left|n,\beta \right\rangle \\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.155 KB / 477 B) :

cβ´β=n,β´|G^|n,β=Gnβδβ´βG^|n,β=β´|n,β´cβ´β=Gnβ|n,β
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>&#x03B2;</mi></mrow></mrow></msub><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi>n</mi><mo>,</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo>,</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>&#x03B2;</mi></mrow></mrow></msub><msub><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>&#x03B2;</mi></mrow></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>G</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo>,</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><munder><mo form="prefix" texclass="OP">&#x2211;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow></mrow></mrow></munder><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo>,</mo><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><msub><mi>c</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x03B2;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>&#x03B2;</mi></mrow></mrow></msub><mo>=</mo><msub><mi>G</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>n</mi><mi>&#x03B2;</mi></mrow></mrow></msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi>n</mi><mo>,</mo><mi>&#x03B2;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Eigenwerte und Eigenzustände von hermiteschen Operatoren page

Identifiers

  • c
  • β
  • ´
  • β
  • n
  • β
  • ´
  • G^
  • n
  • β
  • Gnβ
  • δ
  • β
  • ´
  • β
  • G^
  • n
  • β
  • β
  • ´
  • n
  • β
  • ´
  • c
  • β
  • ´
  • β
  • Gnβ
  • n
  • β

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results