Jump to navigation
Jump to search
General
Display information for equation id:math.1629.5 on revision:1629
* Page found: Eigenwerte und Eigenzustände von hermiteschen Operatoren (eq math.1629.5)
(force rerendering)Occurrences on the following pages:
Hash: 7146ca15f4063b18d0f44e30d8b57766
TeX (original user input):
\left\langle \Phi | \Phi \right\rangle =\left\langle \Psi \right|{{\hat{F}}^{2}}\left| \Psi \right\rangle =\left\langle \Psi \right|\hat{F}{{\left| \Psi \right\rangle }^{2}}={{\left\langle \Phi | \Psi \right\rangle }^{2}}={{\left| \left\langle \Phi | \Psi \right\rangle \right|}^{2}}
TeX (checked):
\left\langle \Phi |\Phi \right\rangle =\left\langle \Psi \right|{{\hat {F}}^{2}}\left|\Psi \right\rangle =\left\langle \Psi \right|{\hat {F}}{{\left|\Psi \right\rangle }^{2}}={{\left\langle \Phi |\Psi \right\rangle }^{2}}={{\left|\left\langle \Phi |\Psi \right\rangle \right|}^{2}}
LaTeXML (experimental; uses MathML) rendering
MathML (9.312 KB / 1.407 KB) :
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle{\displaystyle\left\langle\Phi|\Phi\right\rangle=\left\langle% \Psi\right|{{\hat{F}}^{2}}\left|\Psi\right\rangle=\left\langle\Psi\right|\hat{% F}{{\left|\Psi\right\rangle}^{2}}={{\left\langle\Phi|\Psi\right\rangle}^{2}}={% {\left|\left\langle\Phi|\Psi\right\rangle\right|}^{2}}}}" display="inline">
<semantics id="p1.1.m1.1a">
<mrow id="p1.1.m1.1.40" xref="p1.1.m1.1.40.cmml">
<mrow id="p1.1.m1.1.40.2" xref="p1.1.m1.1.40.2.1.cmml">
<mo id="p1.1.m1.1.1" xref="p1.1.m1.1.40.2.1.1.cmml">⟨</mo>
<mi mathvariant="normal" id="p1.1.m1.1.2" xref="p1.1.m1.1.2.cmml">Φ</mi>
<mo stretchy="false" id="p1.1.m1.1.3" xref="p1.1.m1.1.40.2.1.1.cmml">|</mo>
<mi mathvariant="normal" id="p1.1.m1.1.4" xref="p1.1.m1.1.4.cmml">Φ</mi>
<mo id="p1.1.m1.1.5" xref="p1.1.m1.1.40.2.1.1.cmml">⟩</mo>
</mrow>
<mo id="p1.1.m1.1.6" xref="p1.1.m1.1.6.cmml">=</mo>
<mrow id="p1.1.m1.1.40.3" xref="p1.1.m1.1.40.3.1.cmml">
<mo id="p1.1.m1.1.7" xref="p1.1.m1.1.40.3.1.1.cmml">⟨</mo>
<mi mathvariant="normal" id="p1.1.m1.1.8" xref="p1.1.m1.1.8.cmml">Ψ</mi>
<mo fence="true" id="p1.1.m1.1.9" xref="p1.1.m1.1.40.3.1.1.cmml">|</mo>
<msup id="p1.1.m1.1.40.3.2" xref="p1.1.m1.1.40.3.2.cmml">
<mover accent="true" id="p1.1.m1.1.10" xref="p1.1.m1.1.10.cmml">
<mi id="p1.1.m1.1.10.2" xref="p1.1.m1.1.10.2.cmml">F</mi>
<mo stretchy="false" id="p1.1.m1.1.10.1" xref="p1.1.m1.1.10.1.cmml">^</mo>
</mover>
<mn id="p1.1.m1.1.11.1" xref="p1.1.m1.1.11.1.cmml">2</mn>
</msup>
<mo fence="true" id="p1.1.m1.1.12" xref="p1.1.m1.1.40.3.1.1.cmml">|</mo>
<mi mathvariant="normal" id="p1.1.m1.1.13" xref="p1.1.m1.1.13.cmml">Ψ</mi>
<mo id="p1.1.m1.1.14" xref="p1.1.m1.1.40.3.1.1.cmml">⟩</mo>
</mrow>
<mo id="p1.1.m1.1.15" xref="p1.1.m1.1.15.cmml">=</mo>
<msup id="p1.1.m1.1.40.4" xref="p1.1.m1.1.40.4.cmml">
<mrow id="p1.1.m1.1.40.4.2" xref="p1.1.m1.1.40.4.2.1.cmml">
<mo id="p1.1.m1.1.16" xref="p1.1.m1.1.40.4.2.1.1.cmml">⟨</mo>
<mi mathvariant="normal" id="p1.1.m1.1.17" xref="p1.1.m1.1.17.cmml">Ψ</mi>
<mo fence="true" id="p1.1.m1.1.18" xref="p1.1.m1.1.40.4.2.1.1.cmml">|</mo>
<mover accent="true" id="p1.1.m1.1.19" xref="p1.1.m1.1.19.cmml">
<mi id="p1.1.m1.1.19.2" xref="p1.1.m1.1.19.2.cmml">F</mi>
<mo stretchy="false" id="p1.1.m1.1.19.1" xref="p1.1.m1.1.19.1.cmml">^</mo>
</mover>
<mo fence="true" id="p1.1.m1.1.20" xref="p1.1.m1.1.40.4.2.1.1.cmml">|</mo>
<mi mathvariant="normal" id="p1.1.m1.1.21" xref="p1.1.m1.1.21.cmml">Ψ</mi>
<mo id="p1.1.m1.1.22" xref="p1.1.m1.1.40.4.2.1.1.cmml">⟩</mo>
</mrow>
<mn id="p1.1.m1.1.23.1" xref="p1.1.m1.1.23.1.cmml">2</mn>
</msup>
<mo id="p1.1.m1.1.24" xref="p1.1.m1.1.24.cmml">=</mo>
<msup id="p1.1.m1.1.40.5" xref="p1.1.m1.1.40.5.cmml">
<mrow id="p1.1.m1.1.40.5.2" xref="p1.1.m1.1.40.5.2.1.cmml">
<mo id="p1.1.m1.1.25" xref="p1.1.m1.1.40.5.2.1.1.cmml">⟨</mo>
<mi mathvariant="normal" id="p1.1.m1.1.26" xref="p1.1.m1.1.26.cmml">Φ</mi>
<mo stretchy="false" id="p1.1.m1.1.27" xref="p1.1.m1.1.40.5.2.1.1.cmml">|</mo>
<mi mathvariant="normal" id="p1.1.m1.1.28" xref="p1.1.m1.1.28.cmml">Ψ</mi>
<mo id="p1.1.m1.1.29" xref="p1.1.m1.1.40.5.2.1.1.cmml">⟩</mo>
</mrow>
<mn id="p1.1.m1.1.30.1" xref="p1.1.m1.1.30.1.cmml">2</mn>
</msup>
<mo id="p1.1.m1.1.31" xref="p1.1.m1.1.31.cmml">=</mo>
<msup id="p1.1.m1.1.40.6" xref="p1.1.m1.1.40.6.cmml">
<mrow id="p1.1.m1.1.40.6.2" xref="p1.1.m1.1.40.6.2.1.cmml">
<mo id="p1.1.m1.1.32" xref="p1.1.m1.1.40.6.2.1.1.cmml">|</mo>
<mrow id="p1.1.m1.1.40.6.2.2" xref="p1.1.m1.1.40.6.2.2.1.cmml">
<mo id="p1.1.m1.1.33" xref="p1.1.m1.1.40.6.2.2.1.1.cmml">⟨</mo>
<mi mathvariant="normal" id="p1.1.m1.1.34" xref="p1.1.m1.1.34.cmml">Φ</mi>
<mo stretchy="false" id="p1.1.m1.1.35" xref="p1.1.m1.1.40.6.2.2.1.1.cmml">|</mo>
<mi mathvariant="normal" id="p1.1.m1.1.36" xref="p1.1.m1.1.36.cmml">Ψ</mi>
<mo id="p1.1.m1.1.37" xref="p1.1.m1.1.40.6.2.2.1.1.cmml">⟩</mo>
</mrow>
<mo id="p1.1.m1.1.38" xref="p1.1.m1.1.40.6.2.1.1.cmml">|</mo>
</mrow>
<mn id="p1.1.m1.1.39.1" xref="p1.1.m1.1.39.1.cmml">2</mn>
</msup>
</mrow>
<annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
<apply id="p1.1.m1.1.40.cmml" xref="p1.1.m1.1.40">
<and id="p1.1.m1.1.40a.cmml" xref="p1.1.m1.1.40"/>
<apply id="p1.1.m1.1.40b.cmml" xref="p1.1.m1.1.40">
<eq id="p1.1.m1.1.6.cmml" xref="p1.1.m1.1.6"/>
<apply id="p1.1.m1.1.40.2.1.cmml" xref="p1.1.m1.1.40.2">
<csymbol cd="latexml" id="p1.1.m1.1.40.2.1.1.cmml" xref="p1.1.m1.1.1">inner-product</csymbol>
<ci id="p1.1.m1.1.2.cmml" xref="p1.1.m1.1.2">Φ</ci>
<ci id="p1.1.m1.1.4.cmml" xref="p1.1.m1.1.4">Φ</ci>
</apply>
<apply id="p1.1.m1.1.40.3.1.cmml" xref="p1.1.m1.1.40.3">
<csymbol cd="latexml" id="p1.1.m1.1.40.3.1.1.cmml" xref="p1.1.m1.1.7">quantum-operator-product</csymbol>
<ci id="p1.1.m1.1.8.cmml" xref="p1.1.m1.1.8">Ψ</ci>
<apply id="p1.1.m1.1.40.3.2.cmml" xref="p1.1.m1.1.40.3.2">
<csymbol cd="ambiguous" id="p1.1.m1.1.40.3.2.1.cmml" xref="p1.1.m1.1.40.3.2">superscript</csymbol>
<apply id="p1.1.m1.1.10.cmml" xref="p1.1.m1.1.10">
<ci id="p1.1.m1.1.10.1.cmml" xref="p1.1.m1.1.10.1">^</ci>
<ci id="p1.1.m1.1.10.2.cmml" xref="p1.1.m1.1.10.2">𝐹</ci>
</apply>
<cn type="integer" id="p1.1.m1.1.11.1.cmml" xref="p1.1.m1.1.11.1">2</cn>
</apply>
<ci id="p1.1.m1.1.13.cmml" xref="p1.1.m1.1.13">Ψ</ci>
</apply>
</apply>
<apply id="p1.1.m1.1.40c.cmml" xref="p1.1.m1.1.40">
<eq id="p1.1.m1.1.15.cmml" xref="p1.1.m1.1.15"/>
<share href="#p1.1.m1.1.40.3.cmml" id="p1.1.m1.1.40d.cmml" xref="p1.1.m1.1.40"/>
<apply id="p1.1.m1.1.40.4.cmml" xref="p1.1.m1.1.40.4">
<csymbol cd="ambiguous" id="p1.1.m1.1.40.4.1.cmml" xref="p1.1.m1.1.40.4">superscript</csymbol>
<apply id="p1.1.m1.1.40.4.2.1.cmml" xref="p1.1.m1.1.40.4.2">
<csymbol cd="latexml" id="p1.1.m1.1.40.4.2.1.1.cmml" xref="p1.1.m1.1.16">quantum-operator-product</csymbol>
<ci id="p1.1.m1.1.17.cmml" xref="p1.1.m1.1.17">Ψ</ci>
<apply id="p1.1.m1.1.19.cmml" xref="p1.1.m1.1.19">
<ci id="p1.1.m1.1.19.1.cmml" xref="p1.1.m1.1.19.1">^</ci>
<ci id="p1.1.m1.1.19.2.cmml" xref="p1.1.m1.1.19.2">𝐹</ci>
</apply>
<ci id="p1.1.m1.1.21.cmml" xref="p1.1.m1.1.21">Ψ</ci>
</apply>
<cn type="integer" id="p1.1.m1.1.23.1.cmml" xref="p1.1.m1.1.23.1">2</cn>
</apply>
</apply>
<apply id="p1.1.m1.1.40e.cmml" xref="p1.1.m1.1.40">
<eq id="p1.1.m1.1.24.cmml" xref="p1.1.m1.1.24"/>
<share href="#p1.1.m1.1.40.4.cmml" id="p1.1.m1.1.40f.cmml" xref="p1.1.m1.1.40"/>
<apply id="p1.1.m1.1.40.5.cmml" xref="p1.1.m1.1.40.5">
<csymbol cd="ambiguous" id="p1.1.m1.1.40.5.1.cmml" xref="p1.1.m1.1.40.5">superscript</csymbol>
<apply id="p1.1.m1.1.40.5.2.1.cmml" xref="p1.1.m1.1.40.5.2">
<csymbol cd="latexml" id="p1.1.m1.1.40.5.2.1.1.cmml" xref="p1.1.m1.1.25">inner-product</csymbol>
<ci id="p1.1.m1.1.26.cmml" xref="p1.1.m1.1.26">Φ</ci>
<ci id="p1.1.m1.1.28.cmml" xref="p1.1.m1.1.28">Ψ</ci>
</apply>
<cn type="integer" id="p1.1.m1.1.30.1.cmml" xref="p1.1.m1.1.30.1">2</cn>
</apply>
</apply>
<apply id="p1.1.m1.1.40g.cmml" xref="p1.1.m1.1.40">
<eq id="p1.1.m1.1.31.cmml" xref="p1.1.m1.1.31"/>
<share href="#p1.1.m1.1.40.5.cmml" id="p1.1.m1.1.40h.cmml" xref="p1.1.m1.1.40"/>
<apply id="p1.1.m1.1.40.6.cmml" xref="p1.1.m1.1.40.6">
<csymbol cd="ambiguous" id="p1.1.m1.1.40.6.1.cmml" xref="p1.1.m1.1.40.6">superscript</csymbol>
<apply id="p1.1.m1.1.40.6.2.1.cmml" xref="p1.1.m1.1.40.6.2">
<abs id="p1.1.m1.1.40.6.2.1.1.cmml" xref="p1.1.m1.1.32"/>
<apply id="p1.1.m1.1.40.6.2.2.1.cmml" xref="p1.1.m1.1.40.6.2.2">
<csymbol cd="latexml" id="p1.1.m1.1.40.6.2.2.1.1.cmml" xref="p1.1.m1.1.33">inner-product</csymbol>
<ci id="p1.1.m1.1.34.cmml" xref="p1.1.m1.1.34">Φ</ci>
<ci id="p1.1.m1.1.36.cmml" xref="p1.1.m1.1.36">Ψ</ci>
</apply>
</apply>
<cn type="integer" id="p1.1.m1.1.39.1.cmml" xref="p1.1.m1.1.39.1">2</cn>
</apply>
</apply>
</apply>
</annotation-xml>
<annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle{\displaystyle\left\langle\Phi|\Phi\right\rangle=\left\langle%
\Psi\right|{{\hat{F}}^{2}}\left|\Psi\right\rangle=\left\langle\Psi\right|\hat{%
F}{{\left|\Psi\right\rangle}^{2}}={{\left\langle\Phi|\Psi\right\rangle}^{2}}={%
{\left|\left\langle\Phi|\Psi\right\rangle\right|}^{2}}}}</annotation>
</semantics>
</math>
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (1.981 KB / 316 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Φ</mi><mo>|</mo><mi mathvariant="normal">Φ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Φ</mi><mo>|</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">⟨</mo><mi mathvariant="normal">Φ</mi><mo>|</mo><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">⟩</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Eigenwerte und Eigenzustände von hermiteschen Operatoren page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results