Jump to navigation Jump to search

General

Display information for equation id:math.1629.5 on revision:1629

* Page found: Eigenwerte und Eigenzustände von hermiteschen Operatoren (eq math.1629.5)

(force rerendering)

Occurrences on the following pages:

Hash: 7146ca15f4063b18d0f44e30d8b57766

TeX (original user input):

\left\langle  \Phi  | \Phi  \right\rangle =\left\langle  \Psi  \right|{{\hat{F}}^{2}}\left| \Psi  \right\rangle =\left\langle  \Psi  \right|\hat{F}{{\left| \Psi  \right\rangle }^{2}}={{\left\langle  \Phi  | \Psi  \right\rangle }^{2}}={{\left| \left\langle  \Phi  | \Psi  \right\rangle  \right|}^{2}}

TeX (checked):

\left\langle \Phi |\Phi \right\rangle =\left\langle \Psi \right|{{\hat {F}}^{2}}\left|\Psi \right\rangle =\left\langle \Psi \right|{\hat {F}}{{\left|\Psi \right\rangle }^{2}}={{\left\langle \Phi |\Psi \right\rangle }^{2}}={{\left|\left\langle \Phi |\Psi \right\rangle \right|}^{2}}

LaTeXML (experimental; uses MathML) rendering

MathML (9.312 KB / 1.407 KB) :

Φ | Φ = Ψ | F ^ 2 | Ψ = Ψ | F ^ | Ψ 2 = Φ | Ψ 2 = | Φ | Ψ | 2 inner-product Φ Φ quantum-operator-product Ψ superscript ^ 𝐹 2 Ψ superscript quantum-operator-product Ψ ^ 𝐹 Ψ 2 superscript inner-product Φ Ψ 2 superscript inner-product Φ Ψ 2 {\displaystyle{\displaystyle\left\langle\Phi|\Phi\right\rangle=\left\langle% \Psi\right|{{\hat{F}}^{2}}\left|\Psi\right\rangle=\left\langle\Psi\right|\hat{% F}{{\left|\Psi\right\rangle}^{2}}={{\left\langle\Phi|\Psi\right\rangle}^{2}}={% {\left|\left\langle\Phi|\Psi\right\rangle\right|}^{2}}}}
<math xmlns="http://www.w3.org/1998/Math/MathML" id="p1.1.m1.1" class="ltx_Math" alttext="{\displaystyle{\displaystyle\left\langle\Phi|\Phi\right\rangle=\left\langle%&#10;\Psi\right|{{\hat{F}}^{2}}\left|\Psi\right\rangle=\left\langle\Psi\right|\hat{%&#10;F}{{\left|\Psi\right\rangle}^{2}}={{\left\langle\Phi|\Psi\right\rangle}^{2}}={%&#10;{\left|\left\langle\Phi|\Psi\right\rangle\right|}^{2}}}}" display="inline">
  <semantics id="p1.1.m1.1a">
    <mrow id="p1.1.m1.1.40" xref="p1.1.m1.1.40.cmml">
      <mrow id="p1.1.m1.1.40.2" xref="p1.1.m1.1.40.2.1.cmml">
        <mo id="p1.1.m1.1.1" xref="p1.1.m1.1.40.2.1.1.cmml"></mo>
        <mi mathvariant="normal" id="p1.1.m1.1.2" xref="p1.1.m1.1.2.cmml">Φ</mi>
        <mo stretchy="false" id="p1.1.m1.1.3" xref="p1.1.m1.1.40.2.1.1.cmml">|</mo>
        <mi mathvariant="normal" id="p1.1.m1.1.4" xref="p1.1.m1.1.4.cmml">Φ</mi>
        <mo id="p1.1.m1.1.5" xref="p1.1.m1.1.40.2.1.1.cmml"></mo>
      </mrow>
      <mo id="p1.1.m1.1.6" xref="p1.1.m1.1.6.cmml">=</mo>
      <mrow id="p1.1.m1.1.40.3" xref="p1.1.m1.1.40.3.1.cmml">
        <mo id="p1.1.m1.1.7" xref="p1.1.m1.1.40.3.1.1.cmml"></mo>
        <mi mathvariant="normal" id="p1.1.m1.1.8" xref="p1.1.m1.1.8.cmml">Ψ</mi>
        <mo fence="true" id="p1.1.m1.1.9" xref="p1.1.m1.1.40.3.1.1.cmml">|</mo>
        <msup id="p1.1.m1.1.40.3.2" xref="p1.1.m1.1.40.3.2.cmml">
          <mover accent="true" id="p1.1.m1.1.10" xref="p1.1.m1.1.10.cmml">
            <mi id="p1.1.m1.1.10.2" xref="p1.1.m1.1.10.2.cmml">F</mi>
            <mo stretchy="false" id="p1.1.m1.1.10.1" xref="p1.1.m1.1.10.1.cmml">^</mo>
          </mover>
          <mn id="p1.1.m1.1.11.1" xref="p1.1.m1.1.11.1.cmml">2</mn>
        </msup>
        <mo fence="true" id="p1.1.m1.1.12" xref="p1.1.m1.1.40.3.1.1.cmml">|</mo>
        <mi mathvariant="normal" id="p1.1.m1.1.13" xref="p1.1.m1.1.13.cmml">Ψ</mi>
        <mo id="p1.1.m1.1.14" xref="p1.1.m1.1.40.3.1.1.cmml"></mo>
      </mrow>
      <mo id="p1.1.m1.1.15" xref="p1.1.m1.1.15.cmml">=</mo>
      <msup id="p1.1.m1.1.40.4" xref="p1.1.m1.1.40.4.cmml">
        <mrow id="p1.1.m1.1.40.4.2" xref="p1.1.m1.1.40.4.2.1.cmml">
          <mo id="p1.1.m1.1.16" xref="p1.1.m1.1.40.4.2.1.1.cmml"></mo>
          <mi mathvariant="normal" id="p1.1.m1.1.17" xref="p1.1.m1.1.17.cmml">Ψ</mi>
          <mo fence="true" id="p1.1.m1.1.18" xref="p1.1.m1.1.40.4.2.1.1.cmml">|</mo>
          <mover accent="true" id="p1.1.m1.1.19" xref="p1.1.m1.1.19.cmml">
            <mi id="p1.1.m1.1.19.2" xref="p1.1.m1.1.19.2.cmml">F</mi>
            <mo stretchy="false" id="p1.1.m1.1.19.1" xref="p1.1.m1.1.19.1.cmml">^</mo>
          </mover>
          <mo fence="true" id="p1.1.m1.1.20" xref="p1.1.m1.1.40.4.2.1.1.cmml">|</mo>
          <mi mathvariant="normal" id="p1.1.m1.1.21" xref="p1.1.m1.1.21.cmml">Ψ</mi>
          <mo id="p1.1.m1.1.22" xref="p1.1.m1.1.40.4.2.1.1.cmml"></mo>
        </mrow>
        <mn id="p1.1.m1.1.23.1" xref="p1.1.m1.1.23.1.cmml">2</mn>
      </msup>
      <mo id="p1.1.m1.1.24" xref="p1.1.m1.1.24.cmml">=</mo>
      <msup id="p1.1.m1.1.40.5" xref="p1.1.m1.1.40.5.cmml">
        <mrow id="p1.1.m1.1.40.5.2" xref="p1.1.m1.1.40.5.2.1.cmml">
          <mo id="p1.1.m1.1.25" xref="p1.1.m1.1.40.5.2.1.1.cmml"></mo>
          <mi mathvariant="normal" id="p1.1.m1.1.26" xref="p1.1.m1.1.26.cmml">Φ</mi>
          <mo stretchy="false" id="p1.1.m1.1.27" xref="p1.1.m1.1.40.5.2.1.1.cmml">|</mo>
          <mi mathvariant="normal" id="p1.1.m1.1.28" xref="p1.1.m1.1.28.cmml">Ψ</mi>
          <mo id="p1.1.m1.1.29" xref="p1.1.m1.1.40.5.2.1.1.cmml"></mo>
        </mrow>
        <mn id="p1.1.m1.1.30.1" xref="p1.1.m1.1.30.1.cmml">2</mn>
      </msup>
      <mo id="p1.1.m1.1.31" xref="p1.1.m1.1.31.cmml">=</mo>
      <msup id="p1.1.m1.1.40.6" xref="p1.1.m1.1.40.6.cmml">
        <mrow id="p1.1.m1.1.40.6.2" xref="p1.1.m1.1.40.6.2.1.cmml">
          <mo id="p1.1.m1.1.32" xref="p1.1.m1.1.40.6.2.1.1.cmml">|</mo>
          <mrow id="p1.1.m1.1.40.6.2.2" xref="p1.1.m1.1.40.6.2.2.1.cmml">
            <mo id="p1.1.m1.1.33" xref="p1.1.m1.1.40.6.2.2.1.1.cmml"></mo>
            <mi mathvariant="normal" id="p1.1.m1.1.34" xref="p1.1.m1.1.34.cmml">Φ</mi>
            <mo stretchy="false" id="p1.1.m1.1.35" xref="p1.1.m1.1.40.6.2.2.1.1.cmml">|</mo>
            <mi mathvariant="normal" id="p1.1.m1.1.36" xref="p1.1.m1.1.36.cmml">Ψ</mi>
            <mo id="p1.1.m1.1.37" xref="p1.1.m1.1.40.6.2.2.1.1.cmml"></mo>
          </mrow>
          <mo id="p1.1.m1.1.38" xref="p1.1.m1.1.40.6.2.1.1.cmml">|</mo>
        </mrow>
        <mn id="p1.1.m1.1.39.1" xref="p1.1.m1.1.39.1.cmml">2</mn>
      </msup>
    </mrow>
    <annotation-xml encoding="MathML-Content" id="p1.1.m1.1b">
      <apply id="p1.1.m1.1.40.cmml" xref="p1.1.m1.1.40">
        <and id="p1.1.m1.1.40a.cmml" xref="p1.1.m1.1.40"/>
        <apply id="p1.1.m1.1.40b.cmml" xref="p1.1.m1.1.40">
          <eq id="p1.1.m1.1.6.cmml" xref="p1.1.m1.1.6"/>
          <apply id="p1.1.m1.1.40.2.1.cmml" xref="p1.1.m1.1.40.2">
            <csymbol cd="latexml" id="p1.1.m1.1.40.2.1.1.cmml" xref="p1.1.m1.1.1">inner-product</csymbol>
            <ci id="p1.1.m1.1.2.cmml" xref="p1.1.m1.1.2">Φ</ci>
            <ci id="p1.1.m1.1.4.cmml" xref="p1.1.m1.1.4">Φ</ci>
          </apply>
          <apply id="p1.1.m1.1.40.3.1.cmml" xref="p1.1.m1.1.40.3">
            <csymbol cd="latexml" id="p1.1.m1.1.40.3.1.1.cmml" xref="p1.1.m1.1.7">quantum-operator-product</csymbol>
            <ci id="p1.1.m1.1.8.cmml" xref="p1.1.m1.1.8">Ψ</ci>
            <apply id="p1.1.m1.1.40.3.2.cmml" xref="p1.1.m1.1.40.3.2">
              <csymbol cd="ambiguous" id="p1.1.m1.1.40.3.2.1.cmml" xref="p1.1.m1.1.40.3.2">superscript</csymbol>
              <apply id="p1.1.m1.1.10.cmml" xref="p1.1.m1.1.10">
                <ci id="p1.1.m1.1.10.1.cmml" xref="p1.1.m1.1.10.1">^</ci>
                <ci id="p1.1.m1.1.10.2.cmml" xref="p1.1.m1.1.10.2">𝐹</ci>
              </apply>
              <cn type="integer" id="p1.1.m1.1.11.1.cmml" xref="p1.1.m1.1.11.1">2</cn>
            </apply>
            <ci id="p1.1.m1.1.13.cmml" xref="p1.1.m1.1.13">Ψ</ci>
          </apply>
        </apply>
        <apply id="p1.1.m1.1.40c.cmml" xref="p1.1.m1.1.40">
          <eq id="p1.1.m1.1.15.cmml" xref="p1.1.m1.1.15"/>
          <share href="#p1.1.m1.1.40.3.cmml" id="p1.1.m1.1.40d.cmml" xref="p1.1.m1.1.40"/>
          <apply id="p1.1.m1.1.40.4.cmml" xref="p1.1.m1.1.40.4">
            <csymbol cd="ambiguous" id="p1.1.m1.1.40.4.1.cmml" xref="p1.1.m1.1.40.4">superscript</csymbol>
            <apply id="p1.1.m1.1.40.4.2.1.cmml" xref="p1.1.m1.1.40.4.2">
              <csymbol cd="latexml" id="p1.1.m1.1.40.4.2.1.1.cmml" xref="p1.1.m1.1.16">quantum-operator-product</csymbol>
              <ci id="p1.1.m1.1.17.cmml" xref="p1.1.m1.1.17">Ψ</ci>
              <apply id="p1.1.m1.1.19.cmml" xref="p1.1.m1.1.19">
                <ci id="p1.1.m1.1.19.1.cmml" xref="p1.1.m1.1.19.1">^</ci>
                <ci id="p1.1.m1.1.19.2.cmml" xref="p1.1.m1.1.19.2">𝐹</ci>
              </apply>
              <ci id="p1.1.m1.1.21.cmml" xref="p1.1.m1.1.21">Ψ</ci>
            </apply>
            <cn type="integer" id="p1.1.m1.1.23.1.cmml" xref="p1.1.m1.1.23.1">2</cn>
          </apply>
        </apply>
        <apply id="p1.1.m1.1.40e.cmml" xref="p1.1.m1.1.40">
          <eq id="p1.1.m1.1.24.cmml" xref="p1.1.m1.1.24"/>
          <share href="#p1.1.m1.1.40.4.cmml" id="p1.1.m1.1.40f.cmml" xref="p1.1.m1.1.40"/>
          <apply id="p1.1.m1.1.40.5.cmml" xref="p1.1.m1.1.40.5">
            <csymbol cd="ambiguous" id="p1.1.m1.1.40.5.1.cmml" xref="p1.1.m1.1.40.5">superscript</csymbol>
            <apply id="p1.1.m1.1.40.5.2.1.cmml" xref="p1.1.m1.1.40.5.2">
              <csymbol cd="latexml" id="p1.1.m1.1.40.5.2.1.1.cmml" xref="p1.1.m1.1.25">inner-product</csymbol>
              <ci id="p1.1.m1.1.26.cmml" xref="p1.1.m1.1.26">Φ</ci>
              <ci id="p1.1.m1.1.28.cmml" xref="p1.1.m1.1.28">Ψ</ci>
            </apply>
            <cn type="integer" id="p1.1.m1.1.30.1.cmml" xref="p1.1.m1.1.30.1">2</cn>
          </apply>
        </apply>
        <apply id="p1.1.m1.1.40g.cmml" xref="p1.1.m1.1.40">
          <eq id="p1.1.m1.1.31.cmml" xref="p1.1.m1.1.31"/>
          <share href="#p1.1.m1.1.40.5.cmml" id="p1.1.m1.1.40h.cmml" xref="p1.1.m1.1.40"/>
          <apply id="p1.1.m1.1.40.6.cmml" xref="p1.1.m1.1.40.6">
            <csymbol cd="ambiguous" id="p1.1.m1.1.40.6.1.cmml" xref="p1.1.m1.1.40.6">superscript</csymbol>
            <apply id="p1.1.m1.1.40.6.2.1.cmml" xref="p1.1.m1.1.40.6.2">
              <abs id="p1.1.m1.1.40.6.2.1.1.cmml" xref="p1.1.m1.1.32"/>
              <apply id="p1.1.m1.1.40.6.2.2.1.cmml" xref="p1.1.m1.1.40.6.2.2">
                <csymbol cd="latexml" id="p1.1.m1.1.40.6.2.2.1.1.cmml" xref="p1.1.m1.1.33">inner-product</csymbol>
                <ci id="p1.1.m1.1.34.cmml" xref="p1.1.m1.1.34">Φ</ci>
                <ci id="p1.1.m1.1.36.cmml" xref="p1.1.m1.1.36">Ψ</ci>
              </apply>
            </apply>
            <cn type="integer" id="p1.1.m1.1.39.1.cmml" xref="p1.1.m1.1.39.1">2</cn>
          </apply>
        </apply>
      </apply>
    </annotation-xml>
    <annotation encoding="application/x-tex" id="p1.1.m1.1c">{\displaystyle{\displaystyle\left\langle\Phi|\Phi\right\rangle=\left\langle%
\Psi\right|{{\hat{F}}^{2}}\left|\Psi\right\rangle=\left\langle\Psi\right|\hat{%
F}{{\left|\Psi\right\rangle}^{2}}={{\left\langle\Phi|\Psi\right\rangle}^{2}}={%
{\left|\left\langle\Phi|\Psi\right\rangle\right|}^{2}}}}</annotation>
  </semantics>
</math>

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (1.981 KB / 316 B) :

Φ|Φ=Ψ|F^2|Ψ=Ψ|F^|Ψ2=Φ|Ψ2=|Φ|Ψ|2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A6;</mi><mo>|</mo><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>^</mo></mover></mrow></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A6;</mi><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">&#x27E8;</mo><mi mathvariant="normal">&#x03A6;</mi><mo>|</mo><mi mathvariant="normal">&#x03A8;</mi><mo data-mjx-texclass="CLOSE">&#x27E9;</mo></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Eigenwerte und Eigenzustände von hermiteschen Operatoren page

Identifiers

  • Φ
  • Φ
  • Ψ
  • F^
  • Ψ
  • Ψ
  • F^
  • Ψ
  • Φ
  • Ψ
  • Φ
  • Ψ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results