Jump to navigation Jump to search

General

Display information for equation id:math.1609.35 on revision:1609

* Page found: Eigenschaften eindimensionaler stationärer Zustände (eq math.1609.35)

(force rerendering)

Occurrences on the following pages:

Hash: ddfca8d8ae0ca1e4ea4af5454e074bb3

TeX (original user input):

\begin{align}
& \left( {{\phi }_{E}}\acute{\ }z-{{\phi }_{E}}z\acute{\ } \right)\left. {} \right|_{-\infty }^{{{x}_{0}}}={{\phi }_{E}}\acute{\ }({{x}_{0}})z({{x}_{0}})-{{\phi }_{E}}({{x}_{0}})z\acute{\ }({{x}_{0}})-{{\phi }_{E}}\acute{\ }(-\infty )z(-\infty )+{{\phi }_{E}}(-\infty )z\acute{\ }(-\infty ) \\
& {{\phi }_{E}}({{x}_{0}})={{\phi }_{E}}\acute{\ }(-\infty )=0 \\
& \Rightarrow \left( {{\phi }_{E}}\acute{\ }z-{{\phi }_{E}}z\acute{\ } \right)\left. {} \right|_{-\infty }^{{{x}_{0}}}={{\phi }_{E}}\acute{\ }({{x}_{0}})z({{x}_{0}}) \\
\end{align}

TeX (checked):

{\begin{aligned}&\left({{\phi }_{E}}{\acute {\ }}z-{{\phi }_{E}}z{\acute {\ }}\right)\left.{}\right|_{-\infty }^{{x}_{0}}={{\phi }_{E}}{\acute {\ }}({{x}_{0}})z({{x}_{0}})-{{\phi }_{E}}({{x}_{0}})z{\acute {\ }}({{x}_{0}})-{{\phi }_{E}}{\acute {\ }}(-\infty )z(-\infty )+{{\phi }_{E}}(-\infty )z{\acute {\ }}(-\infty )\\&{{\phi }_{E}}({{x}_{0}})={{\phi }_{E}}{\acute {\ }}(-\infty )=0\\&\Rightarrow \left({{\phi }_{E}}{\acute {\ }}z-{{\phi }_{E}}z{\acute {\ }}\right)\left.{}\right|_{-\infty }^{{x}_{0}}={{\phi }_{E}}{\acute {\ }}({{x}_{0}})z({{x}_{0}})\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (5.357 KB / 539 B) :

(ϕE´zϕEz´)|x0=ϕE´(x0)z(x0)ϕE(x0)z´(x0)ϕE´()z()+ϕE()z´()ϕE(x0)=ϕE´()=0(ϕE´zϕEz´)|x0=ϕE´(x0)z(x0)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>E</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>z</mi><mo>&#x2212;</mo><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>E</mi></mrow></msub><mi>z</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi mathvariant="normal">&#x221E;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></msubsup><mo>=</mo><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>E</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mi>z</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo>&#x2212;</mo><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>E</mi></mrow></msub><mo stretchy="false">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mi>z</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo>&#x2212;</mo><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>E</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mo>&#x2212;</mo><mi mathvariant="normal">&#x221E;</mi><mo stretchy="false">)</mo><mi>z</mi><mo stretchy="false">(</mo><mo>&#x2212;</mo><mi mathvariant="normal">&#x221E;</mi><mo stretchy="false">)</mo><mo>+</mo><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>E</mi></mrow></msub><mo stretchy="false">(</mo><mo>&#x2212;</mo><mi mathvariant="normal">&#x221E;</mi><mo stretchy="false">)</mo><mi>z</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mo>&#x2212;</mo><mi mathvariant="normal">&#x221E;</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>E</mi></mrow></msub><mo stretchy="false">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo>=</mo><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>E</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mo>&#x2212;</mo><mi mathvariant="normal">&#x221E;</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>E</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mi>z</mi><mo>&#x2212;</mo><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>E</mi></mrow></msub><mi>z</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><msubsup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN"></mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi mathvariant="normal">&#x221E;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></msubsup><mo>=</mo><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>E</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mi>z</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Eigenschaften eindimensionaler stationärer Zustände page

Identifiers

  • ϕE
  • ´
  • z
  • ϕE
  • z
  • ´
  • x0
  • ϕE
  • ´
  • x0
  • z
  • x0
  • ϕE
  • x0
  • z
  • ´
  • x0
  • ϕE
  • ´
  • z
  • ϕE
  • z
  • ´
  • ϕE
  • x0
  • ϕE
  • ´
  • ϕE
  • ´
  • z
  • ϕE
  • z
  • ´
  • x0
  • ϕE
  • ´
  • x0
  • z
  • x0

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results