Jump to navigation Jump to search

General

Display information for equation id:math.1605.43 on revision:1605

* Page found: Eigenschaften eindimensionaler stationärer Zustände (eq math.1605.43)

(force rerendering)

Occurrences on the following pages:

Hash: bb02524209716d98763cde37e9875fc8

TeX (original user input):

0=\frac{d{{x}_{0}}}{dE}=-\frac{z({{x}_{0}})}{{{\phi }_{E}}\acute{\ }({{x}_{0}})}=-z{{({{x}_{0}})}^{2}}{{\left[ \int\limits_{-\infty }^{{{x}_{0}}}{{{\phi }_{E}}^{2}dx} \right]}^{-1}}<0

TeX (checked):

0={\frac {d{{x}_{0}}}{dE}}=-{\frac {z({{x}_{0}})}{{{\phi }_{E}}{\acute {\ }}({{x}_{0}})}}=-z{{({{x}_{0}})}^{2}}{{\left[\int \limits _{-\infty }^{{x}_{0}}{{{\phi }_{E}}^{2}dx}\right]}^{-1}}<0

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (2.158 KB / 472 B) :

0=dx0dE=z(x0)ϕE´(x0)=z(x0)2[x0ϕE2dx]1<0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mn>0</mn><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>E</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>z</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>E</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mrow></mrow></mfrac></mrow><mo>=</mo><mo>&#x2212;</mo><mi>z</mi><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi mathvariant="normal">&#x221E;</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></munderover><mrow data-mjx-texclass="ORD"><msup><msub><mi>&#x03D5;</mi><mrow data-mjx-texclass="ORD"><mi>E</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>1</mn></mrow></mrow></msup><mo>&lt;</mo><mn>0</mn></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Eigenschaften eindimensionaler stationärer Zustände page

Identifiers

  • d
  • x0
  • d
  • E
  • z
  • x0
  • ϕE
  • ´
  • x0
  • z
  • x0
  • x0
  • ϕE
  • x

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results