Jump to navigation Jump to search

General

Display information for equation id:math.1593.4 on revision:1593

* Page found: Kontinuitätsgleichung (Quantenmechnik) (eq math.1593.4)

(force rerendering)

Occurrences on the following pages:

Hash: e90a3c5fad10075b05091a845f2fe182

TeX (original user input):

\begin{align}

& i\hbar \frac{\partial }{\partial t}{{\left| \Psi (\bar{r},t) \right|}^{2}}=i\hbar \frac{\partial }{\partial t}\left( \Psi (\bar{r},t)\Psi *(\bar{r},t) \right)=\Psi *(\bar{r},t)i\hbar \frac{\partial }{\partial t}\Psi (\bar{r},t)+\Psi (\bar{r},t)i\hbar \frac{\partial }{\partial t}\Psi *(\bar{r},t) \\
& i\hbar \frac{\partial }{\partial t}{{\left| \Psi (\bar{r},t) \right|}^{2}}=i\hbar \left( \Psi *(\bar{r},t)\dot{\Psi }(\bar{r},t)+\dot{\Psi }*(\bar{r},t)\Psi (\bar{r},t) \right)=\Psi *\hat{H}\Psi -\Psi (\hat{H}\Psi )* \\
\end{align}

TeX (checked):

{\begin{aligned}&i\hbar {\frac {\partial }{\partial t}}{{\left|\Psi ({\bar {r}},t)\right|}^{2}}=i\hbar {\frac {\partial }{\partial t}}\left(\Psi ({\bar {r}},t)\Psi *({\bar {r}},t)\right)=\Psi *({\bar {r}},t)i\hbar {\frac {\partial }{\partial t}}\Psi ({\bar {r}},t)+\Psi ({\bar {r}},t)i\hbar {\frac {\partial }{\partial t}}\Psi *({\bar {r}},t)\\&i\hbar {\frac {\partial }{\partial t}}{{\left|\Psi ({\bar {r}},t)\right|}^{2}}=i\hbar \left(\Psi *({\bar {r}},t){\dot {\Psi }}({\bar {r}},t)+{\dot {\Psi }}*({\bar {r}},t)\Psi ({\bar {r}},t)\right)=\Psi *{\hat {H}}\Psi -\Psi ({\hat {H}}\Psi )*\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (5.684 KB / 537 B) :

it|Ψ(r¯,t)|2=it(Ψ(r¯,t)Ψ*(r¯,t))=Ψ*(r¯,t)itΨ(r¯,t)+Ψ(r¯,t)itΨ*(r¯,t)it|Ψ(r¯,t)|2=i(Ψ*(r¯,t)Ψ˙(r¯,t)+Ψ˙*(r¯,t)Ψ(r¯,t))=Ψ*H^ΨΨ(H^Ψ)*
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mi mathvariant="normal">&#x03A8;</mi><mo>*</mo><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi mathvariant="normal">&#x03A8;</mi><mo>*</mo><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mi mathvariant="normal">&#x03A8;</mi><mo>*</mo><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>&#x2202;</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mi>i</mi><mi data-mjx-alternate="1">&#x210F;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x03A8;</mi><mo>*</mo><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi mathvariant="normal">&#x03A8;</mi><mo>˙</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi mathvariant="normal">&#x03A8;</mi><mo>˙</mo></mover></mrow></mrow><mo>*</mo><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi mathvariant="normal">&#x03A8;</mi><mo>*</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mi mathvariant="normal">&#x03A8;</mi><mo>&#x2212;</mo><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>H</mi><mo>^</mo></mover></mrow></mrow><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">)</mo><mo>*</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Kontinuitätsgleichung (Quantenmechnik) page

Identifiers

  • i
  • t
  • Ψ
  • r¯
  • t
  • i
  • t
  • Ψ
  • r¯
  • t
  • Ψ
  • r¯
  • t
  • Ψ
  • r¯
  • t
  • i
  • t
  • Ψ
  • r¯
  • t
  • Ψ
  • r¯
  • t
  • i
  • t
  • Ψ
  • r¯
  • t
  • i
  • t
  • Ψ
  • r¯
  • t
  • i
  • Ψ
  • r¯
  • t
  • Ψ˙
  • r¯
  • t
  • Ψ˙
  • r¯
  • t
  • Ψ
  • r¯
  • t
  • Ψ
  • H^
  • Ψ
  • Ψ
  • H^
  • Ψ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results