Jump to navigation
Jump to search
General
Display information for equation id:math.1592.5 on revision:1592
* Page found: Kontinuitätsgleichung (Quantenmechnik) (eq math.1592.5)
(force rerendering)Occurrences on the following pages:
Hash: 9f89cbfc3263d8e238adae1758500ccc
TeX (original user input):
\begin{align}
& i\hbar \frac{\partial }{\partial t}{{\left| \Psi (\bar{r},t) \right|}^{2}}=\frac{-{{\hbar }^{2}}}{2m}\left( \Psi *\Delta \Psi -\Psi \Delta \Psi * \right)+\frac{{{e}^{2}}}{2m}\left[ \Psi *{{{\bar{A}}}^{2}}\Psi -\Psi {{{\bar{A}}}^{2}}\Psi * \right]+\Psi *V\Psi -\Psi V\Psi * \\
& \quad \quad \quad \quad \quad \quad +\frac{i\hbar e}{2m}\left( \Psi *\nabla \left( \bar{A}\Psi \right)+\bar{A}\Psi \nabla \Psi *+\Psi \nabla \left( \bar{A}\Psi * \right)+\bar{A}\Psi *\nabla \Psi \right) \\
& \Psi *{{{\bar{A}}}^{2}}\Psi -\Psi {{{\bar{A}}}^{2}}\Psi *=0 \\
& \Psi *V\Psi -\Psi V\Psi *=0 \\
& \Psi *\nabla \left( \bar{A}\Psi \right)+\bar{A}\Psi \nabla \Psi *=\Psi \nabla \left( \bar{A}\Psi * \right)+\bar{A}\Psi *\nabla \Psi =\nabla \left( \Psi \bar{A}\Psi * \right) \\
& \Rightarrow i\hbar \frac{\partial }{\partial t}{{\left| \Psi (\bar{r},t) \right|}^{2}}=\frac{-{{\hbar }^{2}}}{2m}\left( \Psi *\Delta \Psi -\Psi \Delta \Psi * \right)+\frac{i\hbar e}{m}\nabla \left( \Psi \bar{A}\Psi * \right) \\
& \Psi *\Delta \Psi -\Psi \Delta \Psi *=\nabla \left( \Psi *\nabla \Psi -\Psi \nabla \Psi * \right)-\left( \nabla \Psi *\nabla \Psi -\nabla \Psi \nabla \Psi * \right) \\
& \left( \nabla \Psi *\nabla \Psi -\nabla \Psi \nabla \Psi * \right)=0 \\
& \Rightarrow i\hbar \frac{\partial }{\partial t}{{\left| \Psi (\bar{r},t) \right|}^{2}}=\frac{-{{\hbar }^{2}}}{2m}\nabla \left( \Psi *\nabla \Psi -\Psi \nabla \Psi * \right)+\frac{i\hbar e}{m}\nabla \left( \Psi \bar{A}\Psi * \right) \\
& \Rightarrow i\hbar \frac{\partial }{\partial t}{{\left| \Psi (\bar{r},t) \right|}^{2}}=\nabla \left[ \frac{-{{\hbar }^{2}}}{2m}\left( \Psi *\nabla \Psi -\Psi \nabla \Psi * \right)+\frac{i\hbar e}{m}\left( \Psi \bar{A}\Psi * \right) \right] \\
\end{align}
TeX (checked):
{\begin{aligned}&i\hbar {\frac {\partial }{\partial t}}{{\left|\Psi ({\bar {r}},t)\right|}^{2}}={\frac {-{{\hbar }^{2}}}{2m}}\left(\Psi *\Delta \Psi -\Psi \Delta \Psi *\right)+{\frac {{e}^{2}}{2m}}\left[\Psi *{{\bar {A}}^{2}}\Psi -\Psi {{\bar {A}}^{2}}\Psi *\right]+\Psi *V\Psi -\Psi V\Psi *\\&\quad \quad \quad \quad \quad \quad +{\frac {i\hbar e}{2m}}\left(\Psi *\nabla \left({\bar {A}}\Psi \right)+{\bar {A}}\Psi \nabla \Psi *+\Psi \nabla \left({\bar {A}}\Psi *\right)+{\bar {A}}\Psi *\nabla \Psi \right)\\&\Psi *{{\bar {A}}^{2}}\Psi -\Psi {{\bar {A}}^{2}}\Psi *=0\\&\Psi *V\Psi -\Psi V\Psi *=0\\&\Psi *\nabla \left({\bar {A}}\Psi \right)+{\bar {A}}\Psi \nabla \Psi *=\Psi \nabla \left({\bar {A}}\Psi *\right)+{\bar {A}}\Psi *\nabla \Psi =\nabla \left(\Psi {\bar {A}}\Psi *\right)\\&\Rightarrow i\hbar {\frac {\partial }{\partial t}}{{\left|\Psi ({\bar {r}},t)\right|}^{2}}={\frac {-{{\hbar }^{2}}}{2m}}\left(\Psi *\Delta \Psi -\Psi \Delta \Psi *\right)+{\frac {i\hbar e}{m}}\nabla \left(\Psi {\bar {A}}\Psi *\right)\\&\Psi *\Delta \Psi -\Psi \Delta \Psi *=\nabla \left(\Psi *\nabla \Psi -\Psi \nabla \Psi *\right)-\left(\nabla \Psi *\nabla \Psi -\nabla \Psi \nabla \Psi *\right)\\&\left(\nabla \Psi *\nabla \Psi -\nabla \Psi \nabla \Psi *\right)=0\\&\Rightarrow i\hbar {\frac {\partial }{\partial t}}{{\left|\Psi ({\bar {r}},t)\right|}^{2}}={\frac {-{{\hbar }^{2}}}{2m}}\nabla \left(\Psi *\nabla \Psi -\Psi \nabla \Psi *\right)+{\frac {i\hbar e}{m}}\nabla \left(\Psi {\bar {A}}\Psi *\right)\\&\Rightarrow i\hbar {\frac {\partial }{\partial t}}{{\left|\Psi ({\bar {r}},t)\right|}^{2}}=\nabla \left[{\frac {-{{\hbar }^{2}}}{2m}}\left(\Psi *\nabla \Psi -\Psi \nabla \Psi *\right)+{\frac {i\hbar e}{m}}\left(\Psi {\bar {A}}\Psi *\right)\right]\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (14.672 KB / 818 B) :

<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi>i</mi><mi data-mjx-alternate="1">ℏ</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">Ψ</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><msup><mi data-mjx-alternate="1">ℏ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">Ψ</mi><mo>*</mo><mi mathvariant="normal">Δ</mi><mi mathvariant="normal">Ψ</mi><mo>−</mo><mi mathvariant="normal">Ψ</mi><mi mathvariant="normal">Δ</mi><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi mathvariant="normal">Ψ</mi><mo>*</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">Ψ</mi><mo>−</mo><mi mathvariant="normal">Ψ</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo data-mjx-texclass="CLOSE">]</mo></mrow><mo>+</mo><mi mathvariant="normal">Ψ</mi><mo>*</mo><mi>V</mi><mi mathvariant="normal">Ψ</mi><mo>−</mo><mi mathvariant="normal">Ψ</mi><mi>V</mi><mi mathvariant="normal">Ψ</mi><mo>*</mo></mtd></mtr><mtr><mtd></mtd><mtd><mspace width="1em"></mspace><mspace width="1em"></mspace><mspace width="1em"></mspace><mspace width="1em"></mspace><mspace width="1em"></mspace><mspace width="1em"></mspace><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi data-mjx-alternate="1">ℏ</mi><mi>e</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">Ψ</mi><mo>*</mo><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mi mathvariant="normal">Ψ</mi><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo>+</mo><mi mathvariant="normal">Ψ</mi><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mi mathvariant="normal">Ψ</mi><mo>*</mo><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">Ψ</mi><mo>*</mo><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">Ψ</mi><mo>−</mo><mi mathvariant="normal">Ψ</mi><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">Ψ</mi><mo>*</mo><mi>V</mi><mi mathvariant="normal">Ψ</mi><mo>−</mo><mi mathvariant="normal">Ψ</mi><mi>V</mi><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">Ψ</mi><mo>*</mo><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mi mathvariant="normal">Ψ</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mi mathvariant="normal">Ψ</mi><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo>=</mo><mi mathvariant="normal">Ψ</mi><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mi mathvariant="normal">Ψ</mi><mo>*</mo><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mo>=</mo><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mi>i</mi><mi data-mjx-alternate="1">ℏ</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">Ψ</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><msup><mi data-mjx-alternate="1">ℏ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">Ψ</mi><mo>*</mo><mi mathvariant="normal">Δ</mi><mi mathvariant="normal">Ψ</mi><mo>−</mo><mi mathvariant="normal">Ψ</mi><mi mathvariant="normal">Δ</mi><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi data-mjx-alternate="1">ℏ</mi><mi>e</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">Ψ</mi><mo>*</mo><mi mathvariant="normal">Δ</mi><mi mathvariant="normal">Ψ</mi><mo>−</mo><mi mathvariant="normal">Ψ</mi><mi mathvariant="normal">Δ</mi><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo>=</mo><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">Ψ</mi><mo>*</mo><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mo>−</mo><mi mathvariant="normal">Ψ</mi><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>−</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mo>*</mo><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mo>−</mo><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mo>*</mo><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mo>−</mo><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mi>i</mi><mi data-mjx-alternate="1">ℏ</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">Ψ</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><msup><mi data-mjx-alternate="1">ℏ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">Ψ</mi><mo>*</mo><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mo>−</mo><mi mathvariant="normal">Ψ</mi><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi data-mjx-alternate="1">ℏ</mi><mi>e</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>⇒</mo><mi>i</mi><mi data-mjx-alternate="1">ℏ</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>∂</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><mi>t</mi></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">Ψ</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><mi mathvariant="normal">∇</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>−</mo><msup><mi data-mjx-alternate="1">ℏ</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">Ψ</mi><mo>*</mo><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mo>−</mo><mi mathvariant="normal">Ψ</mi><mi mathvariant="normal">∇</mi><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi data-mjx-alternate="1">ℏ</mi><mi>e</mi></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow></mfrac></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">Ψ</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mi mathvariant="normal">Ψ</mi><mo>*</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Kontinuitätsgleichung (Quantenmechnik) page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results