Jump to navigation Jump to search

General

Display information for equation id:math.1587.39 on revision:1587

* Page found: Schrödingergleichung mit äußeren Potenzialen (eq math.1587.39)

(force rerendering)

Occurrences on the following pages:

Hash: 4f49bc525886580b42c5571fb5d92943

TeX (original user input):

H(\bar{p},\bar{q})=\bar{p}\dot{\bar{q}}-L=T+V=\left( m\dot{\bar{q}}+e\bar{A} \right)\dot{\bar{q}}-\frac{m}{2}{{\dot{\bar{q}}}^{2}}-e\left( \dot{\bar{q}}\bar{A}-\Phi  \right)=\frac{m}{2}{{\dot{\bar{q}}}^{2}}+e\Phi =\frac{1}{2m}{{\left( \bar{p}-e\bar{A} \right)}^{2}}+e\Phi

TeX (checked):

H({\bar {p}},{\bar {q}})={\bar {p}}{\dot {\bar {q}}}-L=T+V=\left(m{\dot {\bar {q}}}+e{\bar {A}}\right){\dot {\bar {q}}}-{\frac {m}{2}}{{\dot {\bar {q}}}^{2}}-e\left({\dot {\bar {q}}}{\bar {A}}-\Phi \right)={\frac {m}{2}}{{\dot {\bar {q}}}^{2}}+e\Phi ={\frac {1}{2m}}{{\left({\bar {p}}-e{\bar {A}}\right)}^{2}}+e\Phi

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.563 KB / 437 B) :

H(p¯,q¯)=p¯q¯˙L=T+V=(mq¯˙+eA¯)q¯˙m2q¯˙2e(q¯˙A¯Φ)=m2q¯˙2+eΦ=12m(p¯eA¯)2+eΦ
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mi>H</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi>L</mi><mo>=</mo><mi>T</mi><mo>+</mo><mi>V</mi><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>m</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>+</mo><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>&#x2212;</mo><mi>e</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi mathvariant="normal">&#x03A6;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>m</mi></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>e</mi><mi mathvariant="normal">&#x03A6;</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi></mrow></mrow></mfrac></mrow><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>p</mi><mo>¯</mo></mover></mrow></mrow><mo>&#x2212;</mo><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mi>e</mi><mi mathvariant="normal">&#x03A6;</mi></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Schrödingergleichung mit äußeren Potenzialen page

Identifiers

  • H
  • p¯
  • q¯
  • p¯
  • q¯˙
  • L
  • T
  • V
  • m
  • q¯˙
  • e
  • A¯
  • q¯˙
  • m
  • q¯˙
  • e
  • q¯˙
  • A¯
  • Φ
  • m
  • q¯˙
  • e
  • Φ
  • m
  • p¯
  • e
  • A¯
  • e
  • Φ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results