Jump to navigation Jump to search

General

Display information for equation id:math.1585.88 on revision:1585

* Page found: Schrödingergleichung mit äußeren Potenzialen (eq math.1585.88)

(force rerendering)

Occurrences on the following pages:

Hash: c7ca79e15f0de6ec69656426e77e8f26

TeX (original user input):

{{\left| \Psi ({{{\bar{r}}}_{s}}) \right|}^{2}}={{\left| {{\Psi }_{1}}\acute{\ }{{e}^{-i\frac{e}{\hbar }\int\limits_{1}^{{}}{\bar{A}(\bar{s})d\bar{s}}}}+{{\Psi }_{2}}\acute{\ }{{e}^{-i\frac{e}{\hbar }\int\limits_{2}^{{}}{\bar{A}(\bar{s})d\bar{s}}}} \right|}^{2}}={{\left| {{\Psi }_{1}}\acute{\ } \right|}^{2}}+{{\left| {{\Psi }_{2}}\acute{\ } \right|}^{2}}+2\operatorname{Re}\left[ {{\Psi }_{1}}\acute{\ }{{\Psi }_{2}}\acute{\ }*{{e}^{-i\frac{e}{\hbar }{{\Phi }_{B}}}} \right]

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (4.921 KB / 575 B) :

|Ψ(r¯s)|2=|Ψ1´eie1A¯(s¯)ds¯+Ψ2´eie2A¯(s¯)ds¯|2=|Ψ1´|2+|Ψ2´|2+2[Ψ1´Ψ2´*eieΦB]
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow></msub><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mstyle><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>i</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow></mrow></msup><mo>+</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>i</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>A</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>¯</mo></mover></mrow></mrow></mrow></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi data-mjx-texclass="OP" mathvariant="normal">&#x211C;</mi><mo>&#x2061;</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><msub><mi mathvariant="normal">&#x03A8;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo>*</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>i</mi><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>e</mi></mrow><mrow data-mjx-texclass="ORD"><mi data-mjx-alternate="1">&#x210F;</mi></mrow></mfrac></mrow><msub><mi mathvariant="normal">&#x03A6;</mi><mrow data-mjx-texclass="ORD"><mi>B</mi></mrow></msub></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">]</mo></mrow></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Schrödingergleichung mit äußeren Potenzialen page

Identifiers

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results