Jump to navigation Jump to search

General

Display information for equation id:math.1571.34 on revision:1571

* Page found: Kräftefreie Schrödingergleichung (eq math.1571.34)

(force rerendering)

Occurrences on the following pages:

Hash: 01f73ba1855242616e50b1b3cf4ddd83

TeX (original user input):

\begin{align}
& \Psi (\bar{r},t)=\int_{{}}^{{}}{dk\acute{\ }\tilde{\Psi }({{k}_{0}}+k\acute{\ })}{{e}^{i\left[ ({{k}_{0}}+k\acute{\ })x-({{\omega }_{0}}+{{v}_{g}}k\acute{\ })t \right]}} \\
& \Psi (\bar{r},t)={{e}^{i({{k}_{0}}x-{{\omega }_{0}}t)}}\int_{{}}^{{}}{dk\acute{\ }\tilde{\Psi }({{k}_{0}}+k\acute{\ })}{{e}^{ik\acute{\ }\left[ x-{{v}_{g}}t \right]}} \\
\end{align}

TeX (checked):

{\begin{aligned}&\Psi ({\bar {r}},t)=\int _{}^{}{dk{\acute {\ }}{\tilde {\Psi }}({{k}_{0}}+k{\acute {\ }})}{{e}^{i\left[({{k}_{0}}+k{\acute {\ }})x-({{\omega }_{0}}+{{v}_{g}}k{\acute {\ }})t\right]}}\\&\Psi ({\bar {r}},t)={{e}^{i({{k}_{0}}x-{{\omega }_{0}}t)}}\int _{}^{}{dk{\acute {\ }}{\tilde {\Psi }}({{k}_{0}}+k{\acute {\ }})}{{e}^{ik{\acute {\ }}\left[x-{{v}_{g}}t\right]}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (4.256 KB / 575 B) :

Ψ(r¯,t)=dk´Ψ~(k0+k´)ei[(k0+k´)x(ω0+vgk´)t]Ψ(r¯,t)=ei(k0xω0t)dk´Ψ~(k0+k´)eik´[xvgt]
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>k</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi mathvariant="normal">&#x03A8;</mi><mo>~</mo></mover></mrow></mrow><mo stretchy="false">(</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>+</mo><mi>k</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mo stretchy="false">(</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>+</mo><mi>k</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mi>x</mi><mo>&#x2212;</mo><mo stretchy="false">(</mo><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>+</mo><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow></msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mi>t</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x03A8;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>t</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo stretchy="false">(</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>x</mi><mo>&#x2212;</mo><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mi>t</mi><mo stretchy="false">)</mo></mrow></mrow></msup><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>k</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi mathvariant="normal">&#x03A8;</mi><mo>~</mo></mover></mrow></mrow><mo stretchy="false">(</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo>+</mo><mi>k</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mo stretchy="false">)</mo></mrow><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>k</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mspace width="0.5em"/><mo data-mjx-pseudoscript="true">´</mo></mover></mrow></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mi>x</mi><mo>&#x2212;</mo><msub><mi>v</mi><mrow data-mjx-texclass="ORD"><mi>g</mi></mrow></msub><mi>t</mi><mo data-mjx-texclass="CLOSE">]</mo></mrow></mrow></mrow></msup></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Kräftefreie Schrödingergleichung page

Identifiers

  • Ψ
  • r¯
  • t
  • k
  • ´
  • Ψ~
  • k0
  • k
  • ´
  • e
  • i
  • k0
  • k
  • ´
  • x
  • ω0
  • vg
  • k
  • ´
  • t
  • Ψ
  • r¯
  • t
  • e
  • i
  • k0
  • x
  • ω0
  • t
  • k
  • ´
  • Ψ~
  • k0
  • k
  • ´
  • e
  • i
  • k
  • ´
  • x
  • vg
  • t

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results