Jump to navigation Jump to search

General

Display information for equation id:math.1356.115 on revision:1356

* Page found: Dynamische Systeme und deterministisches Chaos (eq math.1356.115)

(force rerendering)

Occurrences on the following pages:

Hash: ee5ccffdc2c06e4f48b1c07f0100b1cd

TeX (original user input):

\left( \begin{matrix}
   \delta {{{\dot{\omega }}}_{1}}  \\
   \delta {{{\dot{\omega }}}_{2}}  \\
   \delta {{{\dot{\omega }}}_{3}}  \\
\end{matrix} \right)=A\left( \begin{matrix}
   \delta {{\omega }_{1}}  \\
   \delta {{\omega }_{2}}  \\
   \delta {{\omega }_{3}}  \\
\end{matrix} \right)=\left( \begin{matrix}
   0 & -{{k}_{1}}{{\omega }_{3}} & -{{k}_{1}}{{\omega }_{2}}  \\
   {{k}_{2}}{{\omega }_{3}} & 0 & {{k}_{2}}{{\omega }_{1}}  \\
   -{{k}_{3}}{{\omega }_{2}} & -{{k}_{3}}{{\omega }_{1}} & 0  \\
\end{matrix} \right)\left( \begin{matrix}
   \delta {{\omega }_{1}}  \\
   \delta {{\omega }_{2}}  \\
   \delta {{\omega }_{3}}  \\
\end{matrix} \right)

TeX (checked):

\left({\begin{matrix}\delta {{\dot {\omega }}_{1}}\\\delta {{\dot {\omega }}_{2}}\\\delta {{\dot {\omega }}_{3}}\\\end{matrix}}\right)=A\left({\begin{matrix}\delta {{\omega }_{1}}\\\delta {{\omega }_{2}}\\\delta {{\omega }_{3}}\\\end{matrix}}\right)=\left({\begin{matrix}0&-{{k}_{1}}{{\omega }_{3}}&-{{k}_{1}}{{\omega }_{2}}\\{{k}_{2}}{{\omega }_{3}}&0&{{k}_{2}}{{\omega }_{1}}\\-{{k}_{3}}{{\omega }_{2}}&-{{k}_{3}}{{\omega }_{1}}&0\\\end{matrix}}\right)\left({\begin{matrix}\delta {{\omega }_{1}}\\\delta {{\omega }_{2}}\\\delta {{\omega }_{3}}\\\end{matrix}}\right)

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.466 KB / 406 B) :

(δω˙1δω˙2δω˙3)=A(δω1δω2δω3)=(0k1ω3k1ω2k2ω30k2ω1k3ω2k3ω10)(δω1δω2δω3)
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>&#x03B4;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C9;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><mi>&#x03B4;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C9;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd><mi>&#x03B4;</mi><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C9;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mi>A</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>&#x03B4;</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><mi>&#x03B4;</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd><mi>&#x03B4;</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd><mtd><mo>&#x2212;</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd><mtd><mn>0</mn></mtd><mtd><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><mo>&#x2212;</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd><mtd><mo>&#x2212;</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>&#x03B4;</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><mi>&#x03B4;</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd><mi>&#x03B4;</mi><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Dynamische Systeme und deterministisches Chaos page

Identifiers

  • δ
  • ω˙1
  • δ
  • ω˙2
  • δ
  • ω˙3
  • A
  • δ
  • ω1
  • δ
  • ω2
  • δ
  • ω3
  • k1
  • ω3
  • k1
  • ω2
  • k2
  • ω3
  • k2
  • ω1
  • k3
  • ω2
  • k3
  • ω1
  • δ
  • ω1
  • δ
  • ω2
  • δ
  • ω3

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results