Jump to navigation
Jump to search
General
Display information for equation id:math.1355.120 on revision:1355
* Page found: Dynamische Systeme und deterministisches Chaos (eq math.1355.120)
(force rerendering)Occurrences on the following pages:
Hash: 38a42d561784fe5d5647402a6ba1c2cd
TeX (original user input):
\begin{align}
& {{V}_{t}}=\int_{{{U}_{t}}}^{{}}{{{d}^{2f}}x}=\int_{{{U}_{t}}_{0}}^{{}}{{{d}^{2f}}{{x}_{0}}}\det D{{\Phi }_{t}}({{{\bar{x}}}_{0}})=\int_{{{U}_{t}}_{0}}^{{}}{{{d}^{2f}}{{x}_{0}}}\left[ 1+(t-{{t}_{0}})\sum\limits_{i=1}^{2f}{\frac{\partial {{F}_{i}}}{\partial {{x}_{0}}^{i}}+...} \right] \\
& \sum\limits_{i=1}^{2f}{\frac{\partial {{F}_{i}}}{\partial {{x}_{0}}^{i}}={{\left( div\bar{F} \right)}_{{{{\bar{x}}}_{0}}}}} \\
& {{V}_{t}}={{V}_{{{t}_{0}}}}+(t-{{t}_{0}})\int_{{{U}_{t}}_{0}}^{{}}{{{d}^{2f}}{{x}_{0}}}{{\left( div\bar{F} \right)}_{{{{\bar{x}}}_{0}}}}+O{{(t-{{t}_{0}})}^{2}} \\
& \frac{d{{V}_{t}}}{dt}=\begin{matrix}
\lim \\
t->{{t}_{0}} \\
\end{matrix}\frac{{{V}_{t}}-{{V}_{{{t}_{0}}}}}{(t-{{t}_{0}})}=\int_{{{U}_{t}}_{0}}^{{}}{{{d}^{2f}}{{x}_{0}}}{{\left( div\bar{F} \right)}_{{{{\bar{x}}}_{0}}}}=0 \\
& {{\left( div\bar{F} \right)}_{{{{\bar{x}}}_{0}}}}=0 \\
\end{align}
TeX (checked):
{\begin{aligned}&{{V}_{t}}=\int _{{U}_{t}}^{}{{{d}^{2f}}x}=\int _{{{U}_{t}}_{0}}^{}{{{d}^{2f}}{{x}_{0}}}\det D{{\Phi }_{t}}({{\bar {x}}_{0}})=\int _{{{U}_{t}}_{0}}^{}{{{d}^{2f}}{{x}_{0}}}\left[1+(t-{{t}_{0}})\sum \limits _{i=1}^{2f}{{\frac {\partial {{F}_{i}}}{\partial {{x}_{0}}^{i}}}+...}\right]\\&\sum \limits _{i=1}^{2f}{{\frac {\partial {{F}_{i}}}{\partial {{x}_{0}}^{i}}}={{\left(div{\bar {F}}\right)}_{{\bar {x}}_{0}}}}\\&{{V}_{t}}={{V}_{{t}_{0}}}+(t-{{t}_{0}})\int _{{{U}_{t}}_{0}}^{}{{{d}^{2f}}{{x}_{0}}}{{\left(div{\bar {F}}\right)}_{{\bar {x}}_{0}}}+O{{(t-{{t}_{0}})}^{2}}\\&{\frac {d{{V}_{t}}}{dt}}={\begin{matrix}\lim \\t->{{t}_{0}}\\\end{matrix}}{\frac {{{V}_{t}}-{{V}_{{t}_{0}}}}{(t-{{t}_{0}})}}=\int _{{{U}_{t}}_{0}}^{}{{{d}^{2f}}{{x}_{0}}}{{\left(div{\bar {F}}\right)}_{{\bar {x}}_{0}}}=0\\&{{\left(div{\bar {F}}\right)}_{{\bar {x}}_{0}}}=0\\\end{aligned}}
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (8.936 KB / 806 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></msup><mi>x</mi></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><msub><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mi>det</mi><mo>⁡</mo><mi>D</mi><msub><mi mathvariant="normal">Φ</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo stretchy="false">(</mo><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><msub><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">[</mo><mn>1</mn><mo>+</mo><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup></mrow></mrow></mfrac></mrow><mo>+</mo><mo>.</mo><mo>.</mo><mo>.</mo></mrow><mo data-mjx-texclass="CLOSE">]</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">∑</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mo>=</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></munderover><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msub><mi>F</mi><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>∂</mi><msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mi>i</mi></mrow></msup></mrow></mrow></mfrac></mrow><mo>=</mo><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>d</mi><mi>i</mi><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></msub></mrow></mtd></mtr><mtr><mtd></mtd><mtd><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>=</mo><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></msub><mo>+</mo><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><msub><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>d</mi><mi>i</mi><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></msub><mo>+</mo><mi>O</mi><msup><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>d</mi><mi>t</mi></mrow></mrow></mfrac></mrow><mo>=</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mi>lim</mi></mtd></mtr><mtr><mtd><mi>t</mi><mo>−</mo><mo>></mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mo>−</mo><msub><mi>V</mi><mrow data-mjx-texclass="ORD"><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></msub></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mi>t</mi><mo>−</mo><msub><mi>t</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mo stretchy="false">)</mo></mrow></mrow></mfrac></mrow><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">∫</mo><mrow data-mjx-texclass="ORD"><msub><msub><mi>U</mi><mrow data-mjx-texclass="ORD"><mi>t</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>f</mi></mrow></mrow></msup><msub><mi>x</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>d</mi><mi>i</mi><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>d</mi><mi>i</mi><mi>v</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>F</mi><mo>¯</mo></mover></mrow></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>x</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Dynamische Systeme und deterministisches Chaos page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results