Jump to navigation Jump to search

General

Display information for equation id:math.1354.116 on revision:1354

* Page found: Dynamische Systeme und deterministisches Chaos (eq math.1354.116)

(force rerendering)

Occurrences on the following pages:

Hash: 4a1112a7942d15f449d44502efd9f95e

TeX (original user input):

\begin{align}
  & \bar{\varpi }{{*}^{(1)}}:{{\varpi }_{1}}=\varpi ,{{\varpi }_{2}}=0,{{\varpi }_{3}}=0 \\ 
 & 0=\det (A-\lambda 1)=\left| \begin{matrix}
   -\lambda  & 0 & 0  \\
   0 & -\lambda  & {{k}_{2}}{{\omega }_{{}}}  \\
   0 & -{{k}_{3}}\omega  & -\lambda   \\
\end{matrix} \right|=-\lambda \left( {{\lambda }^{2}}+{{k}_{2}}{{k}_{3}}{{\omega }^{2}} \right) \\ 
 & \Rightarrow {{\lambda }_{1}}^{(1)}=0,{{\lambda }_{2/3}}^{(1)}=\pm i\omega \sqrt{{{k}_{2}}{{k}_{3}}} \\ 
\end{align}

TeX (checked):

{\begin{aligned}&{\bar {\varpi }}{{*}^{(1)}}:{{\varpi }_{1}}=\varpi ,{{\varpi }_{2}}=0,{{\varpi }_{3}}=0\\&0=\det(A-\lambda 1)=\left|{\begin{matrix}-\lambda &0&0\\0&-\lambda &{{k}_{2}}{{\omega }_{}}\\0&-{{k}_{3}}\omega &-\lambda \\\end{matrix}}\right|=-\lambda \left({{\lambda }^{2}}+{{k}_{2}}{{k}_{3}}{{\omega }^{2}}\right)\\&\Rightarrow {{\lambda }_{1}}^{(1)}=0,{{\lambda }_{2/3}}^{(1)}=\pm i\omega {\sqrt {{{k}_{2}}{{k}_{3}}}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.257 KB / 590 B) :

ϖ¯*(1):ϖ1=ϖ,ϖ2=0,ϖ3=00=det(Aλ1)=|λ000λk2ω0k3ωλ|=λ(λ2+k2k3ω2)λ1(1)=0,λ2/3(1)=±iωk2k3
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03D6;</mi><mo>¯</mo></mover></mrow></mrow><msup><mo>*</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mi>:</mi><msub><mi>&#x03D6;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>=</mo><mi>&#x03D6;</mi><mo>,</mo><msub><mi>&#x03D6;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo><msub><mi>&#x03D6;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>det</mi><mo>&#x2061;</mo><mo stretchy="false">(</mo><mi>A</mi><mo>&#x2212;</mo><mi>&#x03BB;</mi><mn>1</mn><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">|</mo><mrow data-mjx-texclass="ORD"><mtable columnspacing="1em" rowspacing="4pt"><mtr><mtd><mo>&#x2212;</mo><mi>&#x03BB;</mi></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><mi>&#x03BB;</mi></mtd><mtd><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"></mrow></msub></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mo>&#x2212;</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mi>&#x03C9;</mi></mtd><mtd><mo>&#x2212;</mo><mi>&#x03BB;</mi></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow><mo data-mjx-texclass="CLOSE">|</mo></mrow><mo>=</mo><mo>&#x2212;</mo><mi>&#x03BB;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msup><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo>+</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msup><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mo data-mjx-texclass="CLOSE">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><msup><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo>=</mo><mn>0</mn><mo>,</mo><msup><msub><mi>&#x03BB;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mo>/</mo><mn>3</mn></mrow></mrow></msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></msup><mo>=</mo><mo>&#x00B1;</mo><mi>i</mi><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><msqrt><mrow data-mjx-texclass="ORD"><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mrow></msqrt></mrow></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Dynamische Systeme und deterministisches Chaos page

Identifiers

  • ϖ¯
  • ϖ1
  • ϖ
  • ϖ2
  • ϖ3
  • A
  • λ
  • λ
  • λ
  • k2
  • ω
  • k3
  • ω
  • λ
  • λ
  • λ
  • k2
  • k3
  • ω
  • λ1
  • λ
  • i
  • ω
  • k2
  • k3

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results