Jump to navigation Jump to search

General

Display information for equation id:math.1354.112 on revision:1354

* Page found: Dynamische Systeme und deterministisches Chaos (eq math.1354.112)

(force rerendering)

Occurrences on the following pages:

Hash: 42eb076aa123b024f8b89a8caf60e87e

TeX (original user input):

\begin{align}
  & {{{\dot{\omega }}}_{1}}=-\frac{\left( {{J}_{3}}-{{J}_{2}} \right)}{{{J}_{1}}}{{\omega }_{2}}{{\omega }_{3}}=-{{k}_{1}}{{\omega }_{2}}{{\omega }_{3}} \\ 
 & {{{\dot{\omega }}}_{2}}=\frac{\left( {{J}_{3}}-{{J}_{1}} \right)}{{{J}_{2}}}{{\omega }_{3}}{{\omega }_{1}}={{k}_{2}}{{\omega }_{3}}{{\omega }_{1}} \\ 
 & {{{\dot{\omega }}}_{3}}=-\frac{\left( {{J}_{2}}-{{J}_{1}} \right)}{{{J}_{3}}}{{\omega }_{1}}{{\omega }_{2}}=-{{k}_{3}}{{\omega }_{1}}{{\omega }_{2}} \\ 
\end{align}

TeX (checked):

{\begin{aligned}&{{\dot {\omega }}_{1}}=-{\frac {\left({{J}_{3}}-{{J}_{2}}\right)}{{J}_{1}}}{{\omega }_{2}}{{\omega }_{3}}=-{{k}_{1}}{{\omega }_{2}}{{\omega }_{3}}\\&{{\dot {\omega }}_{2}}={\frac {\left({{J}_{3}}-{{J}_{1}}\right)}{{J}_{2}}}{{\omega }_{3}}{{\omega }_{1}}={{k}_{2}}{{\omega }_{3}}{{\omega }_{1}}\\&{{\dot {\omega }}_{3}}=-{\frac {\left({{J}_{2}}-{{J}_{1}}\right)}{{J}_{3}}}{{\omega }_{1}}{{\omega }_{2}}=-{{k}_{3}}{{\omega }_{1}}{{\omega }_{2}}\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (3.618 KB / 455 B) :

ω˙1=(J3J2)J1ω2ω3=k1ω2ω3ω˙2=(J3J1)J2ω3ω1=k2ω3ω1ω˙3=(J2J1)J3ω1ω2=k3ω1ω2
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C9;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo>&#x2212;</mo><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mrow></mfrac></mrow><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo>=</mo><mo>&#x2212;</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C9;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo>&#x2212;</mo><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mrow></mfrac></mrow><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>&#x03C9;</mi><mo>˙</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><mo>=</mo><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>&#x2212;</mo><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><mo data-mjx-texclass="CLOSE">)</mo></mrow></mrow><mrow data-mjx-texclass="ORD"><msub><mi>J</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub></mrow></mfrac></mrow><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub><mo>=</mo><mo>&#x2212;</mo><msub><mi>k</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></msub><msub><mi>&#x03C9;</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msub></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Dynamische Systeme und deterministisches Chaos page

Identifiers

  • ω˙1
  • J3
  • J2
  • J1
  • ω2
  • ω3
  • k1
  • ω2
  • ω3
  • ω˙2
  • J3
  • J1
  • J2
  • ω3
  • ω1
  • k2
  • ω3
  • ω1
  • ω˙3
  • J2
  • J1
  • J3
  • ω1
  • ω2
  • k3
  • ω1
  • ω2

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results