Jump to navigation
Jump to search
General
Display information for equation id:math.1340.63 on revision:1340
* Page found: Die Hamilton-Jacobi-Theorie (eq math.1340.63)
(force rerendering)Occurrences on the following pages:
Hash: 170145cf5857c061cdcf29bf9a8e8042
TeX (original user input):
H(\phi ,{{p}_{{\dot{\phi }}}})=T+V=\frac{{{p}_{\phi }}^{2}}{2m{{l}^{2}}}+mgl(1-\cos \phi )=E=const.
TeX (checked):
H(\phi ,{{p}_{\dot {\phi }}})=T+V={\frac {{{p}_{\phi }}^{2}}{2m{{l}^{2}}}}+mgl(1-\cos \phi )=E=const.
LaTeXML (experimental; uses MathML) rendering
SVG image empty. Force Re-Rendering
SVG (0 B / 8 B) :
MathML (experimental; no images) rendering
MathML (1.109 KB / 355 B) :
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mi>H</mi><mo stretchy="false">(</mo><mi>ϕ</mi><mo>,</mo><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>ϕ</mi><mo>˙</mo></mover></mrow></mrow></mrow></msub><mo stretchy="false">)</mo><mo>=</mo><mi>T</mi><mo>+</mo><mi>V</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msup><msub><mi>p</mi><mrow data-mjx-texclass="ORD"><mi>ϕ</mi></mrow></msub><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>m</mi><msup><mi>l</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup></mrow></mrow></mfrac></mrow><mo>+</mo><mi>m</mi><mi>g</mi><mi>l</mi><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>cos</mi><mo>⁡</mo><mi>ϕ</mi><mo stretchy="false">)</mo><mo>=</mo><mi>E</mi><mo>=</mo><mi>c</mi><mi>o</mi><mi>n</mi><mi>s</mi><mi>t</mi><mo>.</mo></mstyle></mrow></math>
Translations to Computer Algebra Systems
Translation to Maple
In Maple:
Translation to Mathematica
In Mathematica:
Similar pages
Calculated based on the variables occurring on the entire Die Hamilton-Jacobi-Theorie page
Identifiers
MathML observations
0results
0results
no statistics present please run the maintenance script ExtractFeatures.php
0 results
0 results