Jump to navigation Jump to search

General

Display information for equation id:math.1199.682 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.682)

(force rerendering)

Occurrences on the following pages:

Hash: 6cd471a363b6e5807c9af57d7dd35e48

TeX (original user input):

\begin{align}
& {{d}^{3}}q={{q}^{2}}dq\sin \vartheta d\vartheta d\phi  \\
& \bar{q}\bar{s}=qs\cos \vartheta  \\
& G(\bar{s},\tau )=\frac{c}{{{\left( 2\pi  \right)}^{3}}}\int\limits_{0}^{\infty }{{}}dqq\left( \frac{{{e}^{-icq\tau }}-{{e}^{icq\tau }}}{-2i} \right)\int\limits_{-1}^{1}{{}}d\cos \vartheta {{e}^{iqs\cos \vartheta }}\int\limits_{0}^{2\pi }{{}}d\phi  \\
& \int\limits_{-1}^{1}{{}}d\cos \vartheta {{e}^{iqs\cos \vartheta }}=\frac{{{e}^{iqs}}-{{e}^{-iqs}}}{iqs} \\
& \xi :=cq \\
& \Rightarrow G(\bar{s},\tau )=\frac{c}{2{{\left( 2\pi  \right)}^{2}}s}\int\limits_{0}^{\infty }{{}}d\xi \left\{ {{e}^{i\left( \tau -\frac{s}{c} \right)\xi }}+{{e}^{-i\left( \tau -\frac{s}{c} \right)\xi }}-{{e}^{i\left( \tau +\frac{s}{c} \right)\xi }}-{{e}^{-i\left( \tau +\frac{s}{c} \right)\xi }} \right\} \\
& \Rightarrow G(\bar{s},\tau )=\frac{c}{4\pi s}\int\limits_{0}^{\infty }{{}}d\xi \left\{ \delta \left( \tau -\frac{s}{c} \right)-\delta \left( \tau +\frac{s}{c} \right) \right\} \\
& \delta \left( \tau +\frac{s}{c} \right)=0\quad f\ddot{u}r\ \tau >0 \\
\end{align}

TeX (checked):

{\begin{aligned}&{{d}^{3}}q={{q}^{2}}dq\sin \vartheta d\vartheta d\phi \\&{\bar {q}}{\bar {s}}=qs\cos \vartheta \\&G({\bar {s}},\tau )={\frac {c}{{\left(2\pi \right)}^{3}}}\int \limits _{0}^{\infty }{}dqq\left({\frac {{{e}^{-icq\tau }}-{{e}^{icq\tau }}}{-2i}}\right)\int \limits _{-1}^{1}{}d\cos \vartheta {{e}^{iqs\cos \vartheta }}\int \limits _{0}^{2\pi }{}d\phi \\&\int \limits _{-1}^{1}{}d\cos \vartheta {{e}^{iqs\cos \vartheta }}={\frac {{{e}^{iqs}}-{{e}^{-iqs}}}{iqs}}\\&\xi :=cq\\&\Rightarrow G({\bar {s}},\tau )={\frac {c}{2{{\left(2\pi \right)}^{2}}s}}\int \limits _{0}^{\infty }{}d\xi \left\{{{e}^{i\left(\tau -{\frac {s}{c}}\right)\xi }}+{{e}^{-i\left(\tau -{\frac {s}{c}}\right)\xi }}-{{e}^{i\left(\tau +{\frac {s}{c}}\right)\xi }}-{{e}^{-i\left(\tau +{\frac {s}{c}}\right)\xi }}\right\}\\&\Rightarrow G({\bar {s}},\tau )={\frac {c}{4\pi s}}\int \limits _{0}^{\infty }{}d\xi \left\{\delta \left(\tau -{\frac {s}{c}}\right)-\delta \left(\tau +{\frac {s}{c}}\right)\right\}\\&\delta \left(\tau +{\frac {s}{c}}\right)=0\quad f{\ddot {u}}r\ \tau >0\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (8.812 KB / 859 B) :

d3q=q2dqsinϑdϑdϕq¯s¯=qscosϑG(s¯,τ)=c(2π)30dqq(eicqτeicqτ2i)11dcosϑeiqscosϑ02πdϕ11dcosϑeiqscosϑ=eiqseiqsiqsξ:=cqG(s¯,τ)=c2(2π)2s0dξ{ei(τsc)ξ+ei(τsc)ξei(τ+sc)ξei(τ+sc)ξ}G(s¯,τ)=c4πs0dξ{δ(τsc)δ(τ+sc)}δ(τ+sc)=0fu¨rτ>0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>q</mi><mo>=</mo><msup><mi>q</mi><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>d</mi><mi>q</mi><mi>sin</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><mi>d</mi><mi>&#x03D1;</mi><mi>d</mi><mi>&#x03D5;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>q</mi><mo>¯</mo></mover></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>¯</mo></mover></mrow></mrow><mo>=</mo><mi>q</mi><mi>s</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi></mtd></mtr><mtr><mtd></mtd><mtd><mi>G</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>&#x03C4;</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow><mrow data-mjx-texclass="ORD"><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>&#x03C0;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mi>d</mi><mi>q</mi><mi>q</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>i</mi><mi>c</mi><mi>q</mi><mi>&#x03C4;</mi></mrow></mrow></msup><mo>&#x2212;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>c</mi><mi>q</mi><mi>&#x03C4;</mi></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>2</mn><mi>i</mi></mrow></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></munderover><mi>d</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>q</mi><mi>s</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi></mrow></mrow></msup><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><mi>&#x03C0;</mi></mrow></mrow></munderover><mi>d</mi><mi>&#x03D5;</mi></mtd></mtr><mtr><mtd></mtd><mtd><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mn>1</mn></mrow></mrow><mrow data-mjx-texclass="ORD"><mn>1</mn></mrow></munderover><mi>d</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>q</mi><mi>s</mi><mi>cos</mi><mo>&#x2061;</mo><mi>&#x03D1;</mi></mrow></mrow></msup><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>q</mi><mi>s</mi></mrow></mrow></msup><mo>&#x2212;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>i</mi><mi>q</mi><mi>s</mi></mrow></mrow></msup></mrow></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mi>q</mi><mi>s</mi></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>&#x03BE;</mi><mi>:</mi><mo>=</mo><mi>c</mi><mi>q</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>G</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>&#x03C4;</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>2</mn><msup><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mn>2</mn><mi>&#x03C0;</mi><mo data-mjx-texclass="CLOSE">)</mo></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></msup><mi>s</mi></mrow></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mi>d</mi><mi>&#x03BE;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C4;</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03BE;</mi></mrow></mrow></msup><mo>+</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C4;</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03BE;</mi></mrow></mrow></msup><mo>&#x2212;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C4;</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03BE;</mi></mrow></mrow></msup><mo>&#x2212;</mo><msup><mi>e</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mo>&#x2212;</mo><mi>i</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C4;</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mi>&#x03BE;</mi></mrow></mrow></msup><mo data-mjx-texclass="CLOSE">}</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>G</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>s</mi><mo>¯</mo></mover></mrow></mrow><mo>,</mo><mi>&#x03C4;</mi><mo stretchy="false">)</mo><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mn>4</mn><mi>&#x03C0;</mi><mi>s</mi></mrow></mrow></mfrac></mrow><munderover><mo form="prefix" texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow><mrow data-mjx-texclass="ORD"><mi mathvariant="normal">&#x221E;</mi></mrow></munderover><mi>d</mi><mi>&#x03BE;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">{</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C4;</mi><mo>&#x2212;</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C4;</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo data-mjx-texclass="CLOSE">}</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mi>&#x03B4;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi>&#x03C4;</mi><mo>+</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><mi>s</mi></mrow><mrow data-mjx-texclass="ORD"><mi>c</mi></mrow></mfrac></mrow><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>=</mo><mn>0</mn><mspace width="1em"></mspace><mi>f</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>u</mi><mo>¨</mo></mover></mrow></mrow><mi>r</mi><mspace width="0.5em"/><mi>&#x03C4;</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • d
  • q
  • q
  • d
  • q
  • ϑ
  • d
  • ϑ
  • d
  • ϕ
  • q¯
  • s¯
  • q
  • s
  • ϑ
  • G
  • s¯
  • τ
  • c
  • π
  • q
  • q
  • e
  • i
  • c
  • q
  • τ
  • e
  • i
  • c
  • q
  • τ
  • i
  • ϑ
  • e
  • i
  • q
  • s
  • ϑ
  • π
  • ϕ
  • ϑ
  • e
  • i
  • q
  • s
  • ϑ
  • e
  • i
  • q
  • s
  • e
  • i
  • q
  • s
  • i
  • q
  • s
  • ξ
  • c
  • q
  • G
  • s¯
  • τ
  • c
  • π
  • s
  • ξ
  • e
  • i
  • τ
  • s
  • c
  • ξ
  • e
  • i
  • τ
  • s
  • c
  • ξ
  • e
  • i
  • τ
  • s
  • c
  • ξ
  • e
  • i
  • τ
  • s
  • c
  • ξ
  • G
  • s¯
  • τ
  • c
  • π
  • s
  • ξ
  • δ
  • τ
  • s
  • c
  • δ
  • τ
  • s
  • c
  • δ
  • τ
  • s
  • c
  • f
  • u¨
  • r
  • τ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results