Jump to navigation Jump to search

General

Display information for equation id:math.1199.278 on revision:1199

* Page found: Elektrodynamik Schöll (eq math.1199.278)

(force rerendering)

Occurrences on the following pages:

Hash: f772562e7e4d131317d616353286f89f

TeX (original user input):

\begin{align}
& \Rightarrow \delta W=\frac{{{\varepsilon }_{0}}}{2}\int_{V}^{{}}{{{d}^{3}}r(2\bar{E}(\bar{r})\delta \bar{E}(\bar{r}))=-}{{\varepsilon }_{0}}\int_{V}^{{}}{{{d}^{3}}r(\nabla \Phi (\bar{r})\delta \bar{E}(\bar{r}))} \\
& (\nabla \Phi (\bar{r})\delta \bar{E}(\bar{r}))=\nabla \left( \Phi (\bar{r})\delta \bar{E}(\bar{r}) \right)-\Phi (\bar{r})\nabla \delta \bar{E}(\bar{r}) \\
& \nabla \cdot \delta \bar{E}(\bar{r})=\delta \nabla \cdot \bar{E}(\bar{r})=0,da\ \rho =0 \\
\end{align}

TeX (checked):

{\begin{aligned}&\Rightarrow \delta W={\frac {{\varepsilon }_{0}}{2}}\int _{V}^{}{{{d}^{3}}r(2{\bar {E}}({\bar {r}})\delta {\bar {E}}({\bar {r}}))=-}{{\varepsilon }_{0}}\int _{V}^{}{{{d}^{3}}r(\nabla \Phi ({\bar {r}})\delta {\bar {E}}({\bar {r}}))}\\&(\nabla \Phi ({\bar {r}})\delta {\bar {E}}({\bar {r}}))=\nabla \left(\Phi ({\bar {r}})\delta {\bar {E}}({\bar {r}})\right)-\Phi ({\bar {r}})\nabla \delta {\bar {E}}({\bar {r}})\\&\nabla \cdot \delta {\bar {E}}({\bar {r}})=\delta \nabla \cdot {\bar {E}}({\bar {r}})=0,da\ \rho =0\\\end{aligned}}

LaTeXML (experimental; uses MathML) rendering

MathML (0 B / 8 B) :

SVG image empty. Force Re-Rendering

SVG (0 B / 8 B) :


MathML (experimental; no images) rendering

MathML (5.199 KB / 603 B) :

δW=ε02Vd3r(2E¯(r¯)δE¯(r¯))=ε0Vd3r(Φ(r¯)δE¯(r¯))(Φ(r¯)δE¯(r¯))=(Φ(r¯)δE¯(r¯))Φ(r¯)δE¯(r¯)δE¯(r¯)=δE¯(r¯)=0,daρ=0
<math class="mwe-math-element" xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-mjx-texclass="ORD"><mstyle displaystyle="true" scriptlevel="0"><mrow data-mjx-texclass="ORD"><mtable columnalign="right left right left right left right left right left right left" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true" rowspacing="3pt"><mtr><mtd></mtd><mtd><mo>&#x21D2;</mo><mi>&#x03B4;</mi><mi>W</mi><mo>=</mo><mrow data-mjx-texclass="ORD"><mfrac><mrow data-mjx-texclass="ORD"><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub></mrow><mrow data-mjx-texclass="ORD"><mn>2</mn></mrow></mfrac></mrow><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mo stretchy="false">(</mo><mn>2</mn><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mo>&#x2212;</mo></mrow><msub><mi>&#x03B5;</mi><mrow data-mjx-texclass="ORD"><mn>0</mn></mrow></msub><mstyle displaystyle="true" scriptlevel="0"><munderover><mo texclass="OP">&#x222B;</mo><mrow data-mjx-texclass="ORD"><mi>V</mi></mrow><mrow data-mjx-texclass="ORD"></mrow></munderover></mstyle><mrow data-mjx-texclass="ORD"><msup><mi>d</mi><mrow data-mjx-texclass="ORD"><mn>3</mn></mrow></msup><mi>r</mi><mo stretchy="false">(</mo><mi mathvariant="normal">&#x2207;</mi><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo stretchy="false">)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo stretchy="false">(</mo><mi mathvariant="normal">&#x2207;</mi><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mo>=</mo><mi mathvariant="normal">&#x2207;</mi><mrow data-mjx-texclass="INNER"><mo data-mjx-texclass="OPEN">(</mo><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo data-mjx-texclass="CLOSE">)</mo></mrow><mo>&#x2212;</mo><mi mathvariant="normal">&#x03A6;</mi><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mi mathvariant="normal">&#x2207;</mi><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi mathvariant="normal">&#x2207;</mi><mo>&#x22C5;</mo><mi>&#x03B4;</mi><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><mi>&#x03B4;</mi><mi mathvariant="normal">&#x2207;</mi><mo>&#x22C5;</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>E</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">(</mo><mrow data-mjx-texclass="ORD"><mrow data-mjx-texclass="ORD"><mover><mi>r</mi><mo>¯</mo></mover></mrow></mrow><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn><mo>,</mo><mi>d</mi><mi>a</mi><mspace width="0.5em"/><mi>&#x03C1;</mi><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mstyle></mrow></math>

Translations to Computer Algebra Systems

Translation to Maple

In Maple:

Translation to Mathematica

In Mathematica:

Similar pages

Calculated based on the variables occurring on the entire Elektrodynamik Schöll page

Identifiers

  • δ
  • W
  • ε0
  • V
  • r
  • E¯
  • r¯
  • δ
  • E¯
  • r¯
  • ε0
  • V
  • r
  • Φ
  • r¯
  • δ
  • E¯
  • r¯
  • Φ
  • r¯
  • δ
  • E¯
  • r¯
  • Φ
  • r¯
  • δ
  • E¯
  • r¯
  • Φ
  • r¯
  • δ
  • E¯
  • r¯
  • δ
  • E¯
  • r¯
  • δ
  • E¯
  • r¯
  • d
  • a
  • ρ

MathML observations

0results

0results

no statistics present please run the maintenance script ExtractFeatures.php

0 results

0 results